Answer :
To determine the correct balanced chemical equation for the given reaction, follow these steps:
Step 1: Write down the unbalanced chemical equation:
[tex]\[ \text{NH}_3 + \text{O}_2 \rightarrow \text{NO} + \text{H}_2\text{O} \][/tex]
Step 2: Count the number of each type of atom on both sides of the equation:
- Left side (Reactants):
- Nitrogen (N): 1 (from NH[tex]$_3$[/tex])
- Hydrogen (H): 3 (from NH[tex]$_3$[/tex])
- Oxygen (O): 2 (from O[tex]$_2$[/tex])
- Right side (Products):
- Nitrogen (N): 1 (from NO)
- Hydrogen (H): 2 (from H[tex]$_2$[/tex]O)
- Oxygen (O): 1 (from NO) + 1 (from H[tex]$_2$[/tex]O) = 2
Step 3: Balance nitrogen atoms first. To balance the nitrogen atoms, we need 4 NH[tex]$_3$[/tex] molecules to balance with 4 NO on the product side:
[tex]\[ 4 \text{NH}_3 + \text{O}_2 \rightarrow 4 \text{NO} + \text{H}_2\text{O} \][/tex]
Step 4: Balance the oxygen atoms next. Adjusting the oxygen for NO and H[tex]$_2$[/tex]O:
[tex]\[ 4 \text{NH}_3 + 5 \text{O}_2 \rightarrow 4 \text{NO} + 6 \text{H}_2\text{O} \][/tex]
Step 5: Finally, ensure all hydrogen atoms are balanced:
[tex]\[ 4 \text{NH}_3 + 5 \text{O}_2 \rightarrow 4 \text{NO} + 6 \text{H}_2\text{O} \][/tex]
Now, let's confirm the atom count is balanced:
- Left side (Reactants):
- Nitrogen (N): 4 (from NH[tex]$_3$[/tex])
- Hydrogen (H): 4 3 = 12 (from NH[tex]$_3$[/tex])
- Oxygen (O): 5 2 = 10 (from O[tex]$_2$[/tex])
- Right side (Products):
- Nitrogen (N): 4 (from NO)
- Hydrogen (H): 6 * 2 = 12 (from H[tex]$_2$[/tex]O)
- Oxygen (O): 4 (from NO) + 6 (from H[tex]$_2$[/tex]O) = 10
Since the number of each type of atom is the same on both sides, the equation is balanced. Therefore, the correct balanced equation is:
[tex]\[ 4 \text{NH}_3 + 5 \text{O}_2 \rightarrow 4 \text{NO} + 6 \text{H}_2\text{O} \][/tex]
Thus, the correct answer is:
[tex]\[ \boxed{C} \][/tex]
Step 1: Write down the unbalanced chemical equation:
[tex]\[ \text{NH}_3 + \text{O}_2 \rightarrow \text{NO} + \text{H}_2\text{O} \][/tex]
Step 2: Count the number of each type of atom on both sides of the equation:
- Left side (Reactants):
- Nitrogen (N): 1 (from NH[tex]$_3$[/tex])
- Hydrogen (H): 3 (from NH[tex]$_3$[/tex])
- Oxygen (O): 2 (from O[tex]$_2$[/tex])
- Right side (Products):
- Nitrogen (N): 1 (from NO)
- Hydrogen (H): 2 (from H[tex]$_2$[/tex]O)
- Oxygen (O): 1 (from NO) + 1 (from H[tex]$_2$[/tex]O) = 2
Step 3: Balance nitrogen atoms first. To balance the nitrogen atoms, we need 4 NH[tex]$_3$[/tex] molecules to balance with 4 NO on the product side:
[tex]\[ 4 \text{NH}_3 + \text{O}_2 \rightarrow 4 \text{NO} + \text{H}_2\text{O} \][/tex]
Step 4: Balance the oxygen atoms next. Adjusting the oxygen for NO and H[tex]$_2$[/tex]O:
[tex]\[ 4 \text{NH}_3 + 5 \text{O}_2 \rightarrow 4 \text{NO} + 6 \text{H}_2\text{O} \][/tex]
Step 5: Finally, ensure all hydrogen atoms are balanced:
[tex]\[ 4 \text{NH}_3 + 5 \text{O}_2 \rightarrow 4 \text{NO} + 6 \text{H}_2\text{O} \][/tex]
Now, let's confirm the atom count is balanced:
- Left side (Reactants):
- Nitrogen (N): 4 (from NH[tex]$_3$[/tex])
- Hydrogen (H): 4 3 = 12 (from NH[tex]$_3$[/tex])
- Oxygen (O): 5 2 = 10 (from O[tex]$_2$[/tex])
- Right side (Products):
- Nitrogen (N): 4 (from NO)
- Hydrogen (H): 6 * 2 = 12 (from H[tex]$_2$[/tex]O)
- Oxygen (O): 4 (from NO) + 6 (from H[tex]$_2$[/tex]O) = 10
Since the number of each type of atom is the same on both sides, the equation is balanced. Therefore, the correct balanced equation is:
[tex]\[ 4 \text{NH}_3 + 5 \text{O}_2 \rightarrow 4 \text{NO} + 6 \text{H}_2\text{O} \][/tex]
Thus, the correct answer is:
[tex]\[ \boxed{C} \][/tex]