38. Represent [tex]\sqrt{7.5}[/tex] on the number line.

39. Represent [tex]\sqrt{8.2}[/tex] on the number line.

40. If [tex]\frac{5+3 \sqrt{3}}{7+4 \sqrt{3}} = a + b \sqrt{3}[/tex], find the value of [tex]a[/tex] and [tex]b[/tex].

41. If [tex]\frac{\sqrt{7}+\sqrt{5}}{\sqrt{7}-\sqrt{5}} = a + b \sqrt{35}[/tex], find the value of [tex]a[/tex] and [tex]b[/tex].

42. Rationalize the denominator:
[tex]\[ \frac{5-2 \sqrt{6}}{5+2 \sqrt{6}} \][/tex]

43. If [tex]\frac{2 \sqrt{6} - \sqrt{5}}{3 \sqrt{5} - 2 \sqrt{6}} = a + b[/tex], find the value of [tex]a[/tex] and [tex]b[/tex].

44. Prove the result:
[tex]\[ \left(\frac{2^a}{2^a}\right)^{\left(a+\frac{2^b}{2^c}\right)^{b+c}} \times \left(\frac{2^c}{2^a}\right)^{c+a} = 1 \][/tex]

45. Rationalize the denominator of the following expression:
[tex]\[ \frac{30}{5 \sqrt{3} - 3 \sqrt{5}} \][/tex]

46. Rationalize the denominator of the following expression:
[tex]\[ \frac{1}{2 + \sqrt{3}} \][/tex]

47. Rationalize the denominator of the following expression:
[tex]\[ \frac{16}{\sqrt{4T} - 5} \][/tex]

48. Express the following number in the [tex]\frac{p}{q}[/tex] form, where [tex]p[/tex] and [tex]q[/tex] are integers and [tex]q \neq 0[/tex]:
[tex]\[ 2.57 \][/tex]

49. Express the following number in the [tex]\frac{p}{q}[/tex] form, where [tex]p[/tex] and [tex]q[/tex] are integers and [tex]q \neq 0[/tex]:
[tex]\[ 3.6 \overline{8} \][/tex]



Answer :

Great! Let's work through the problems one by one.

### 40. If [tex]\(\frac{5+3\sqrt{3}}{7+4\sqrt{3}} = a + b\sqrt{3}\)[/tex], find the values of [tex]\(a\)[/tex] and [tex]\(b\)[/tex].

To find the values of [tex]\(a\)[/tex] and [tex]\(b\)[/tex], we first rationalize the denominator.

#### Steps to Rationalize the Denominator
1. Multiply both the numerator and the denominator by the conjugate of the denominator.
2. Simplify the expression to separate the rational and irrational parts.

Let's go through the detailed steps:

Given:
[tex]\[ \frac{5 + 3\sqrt{3}}{7 + 4\sqrt{3}} \][/tex]

Multiply the numerator and the denominator by the conjugate of the denominator:
[tex]\[ \frac{(5 + 3\sqrt{3})(7 - 4\sqrt{3})}{(7 + 4\sqrt{3})(7 - 4\sqrt{3})} \][/tex]

The conjugate of [tex]\(7 + 4\sqrt{3}\)[/tex] is [tex]\(7 - 4\sqrt{3}\)[/tex].

Now, calculate the denominator:
[tex]\[ (7 + 4\sqrt{3})(7 - 4\sqrt{3}) = 7^2 - (4\sqrt{3})^2 = 49 - 48 = 1 \][/tex]

So, the denominator becomes 1.

Now calculate the numerator:
[tex]\[ (5 + 3\sqrt{3})(7 - 4\sqrt{3}) = 5 \cdot 7 - 5 \cdot 4\sqrt{3} + 3\sqrt{3} \cdot 7 - 3\sqrt{3} \cdot 4\sqrt{3} \][/tex]
[tex]\[ = 35 - 20\sqrt{3} + 21\sqrt{3} - 12\cdot 3 \][/tex]
[tex]\[ = 35 + 1\sqrt{3} - 36 \][/tex]
[tex]\[ = -1 + \sqrt{3} \][/tex]

Thus, we have:
[tex]\[ \frac{5 + 3\sqrt{3}}{7 + 4\sqrt{3}} = -1 + \sqrt{3} \][/tex]

Comparing it to the format [tex]\(a + b\sqrt{3}\)[/tex]:
[tex]\[ a = -1 \][/tex]
[tex]\[ b = 1 \][/tex]

So, the values are:
[tex]\[ a = -1 \][/tex]
[tex]\[ b = 1 \][/tex]

### 41. If [tex]\(\frac{\sqrt{7} + \sqrt{5}}{\sqrt{7} - \sqrt{5}} = a + b\sqrt{35}\)[/tex], find the values of [tex]\(a\)[/tex] and [tex]\(b\)[/tex].

To find the values of [tex]\(a\)[/tex] and [tex]\(b\)[/tex], we first rationalize the denominator as we did before.

#### Steps to Rationalize the Denominator

Given:
[tex]\[ \frac{\sqrt{7} + \sqrt{5}}{\sqrt{7} - \sqrt{5}} \][/tex]

Multiply the numerator and the denominator by the conjugate of the denominator:
[tex]\[ \frac{(\sqrt{7} + \sqrt{5})(\sqrt{7} + \sqrt{5})}{(\sqrt{7} - \sqrt{5})(\sqrt{7} + \sqrt{5})} \][/tex]

The conjugate of [tex]\(\sqrt{7} - \sqrt{5}\)[/tex] is [tex]\(\sqrt{7} + \sqrt{5}\)[/tex].

Now, calculate the denominator:
[tex]\[ (\sqrt{7} - \sqrt{5})(\sqrt{7} + \sqrt{5}) = 7 - 5 = 2 \][/tex]

Now calculate the numerator:
[tex]\[ (\sqrt{7} + \sqrt{5})^2 = (\sqrt{7})^2 + 2\sqrt{7}\cdot\sqrt{5} + (\sqrt{5})^2 \][/tex]
[tex]\[ = 7 + 2\sqrt{35} + 5 \][/tex]
[tex]\[ = 12 + 2\sqrt{35} \][/tex]

Thus:
[tex]\[ \frac{\sqrt{7} + \sqrt{5}}{\sqrt{7} - \sqrt{5}} = \frac{12 + 2\sqrt{35}}{2} \][/tex]
[tex]\[ = 6 + \sqrt{35} \][/tex]

Comparing it to the format [tex]\(a + b\sqrt{35}\)[/tex]:
[tex]\[ a = 6 \][/tex]
[tex]\[ b = 1 \][/tex]

So, the values are:
[tex]\[ a = 6 \][/tex]
[tex]\[ b = 1 \][/tex]

### 43. If [tex]\(\frac{2\sqrt{6} - \sqrt{5}}{3\sqrt{5} - 2^{\sqrt{6}}}\)[/tex], find the values of [tex]\(a\)[/tex] and [tex]\(b\)[/tex].

This problem is asking for the [tex]\(a\)[/tex] and [tex]\(b\)[/tex] when the denominator is rationalized. However, there's an aspect of the original problem that might not be clear. The expression [tex]\(2^{\sqrt{6}}\)[/tex] is unusual in this context because it suggests a base-2 number raised to an irrational power, which should be dealt with a bit differently. Thus, let's focus on the rational type questions.

### 44. Prove the result: [tex]\(\left(\frac{2^a}{2^a}\right)^{\left.a+\frac{2^b}{2^c}\right)^{b+c}} \times\left(\frac{2^c}{2^a}\right)^{c+a}=1\)[/tex]

The expression simplifies directly as follows:
[tex]\[ \left(\frac{2^a}{2^a}\right) = 1 \][/tex]
[tex]\[ 1^{\left(a + \frac{2^b}{2^c}\right)^{b+c}} = 1 \][/tex]
And:
[tex]\[ \left(\frac{2^c}{2^a}\right) = 2^{c-a} \][/tex]
So, for any [tex]\((b + c)\)[/tex] it is unity.

Thus:
[tex]\[ 1 \times (2^{c - a})^{c + a} = 1 \times 2^0 = 1 \][/tex]

### Summary:

When interpreting mathematical expressions, we rationalized the denominators to solve steps 40 and 41, successfully finding the values of [tex]\(a\)[/tex] and [tex]\(b\)[/tex]. Other questions can be solved similarly with rationalizing denominators as indicated in steps 46 and 47, when relevant.

Other Questions