Aaliyah's Savings Plan

\begin{tabular}{|c|c|c|c|}
\hline
[tex]$w$[/tex] & [tex]$25+8.25 w$[/tex] & [tex]$t$[/tex] & [tex]$(w, t)$[/tex] \\
\hline
12 & [tex]$25+8.25(12)$[/tex] & 124 & [tex]$(12, 124)$[/tex] \\
\hline
13 & [tex]$25+8.25(13)$[/tex] & 132.25 & [tex]$(13, 132.25)$[/tex] \\
\hline
14 & [tex]$25+8.25(14)$[/tex] & 140.5 & [tex]$(14, 140.5)$[/tex] \\
\hline
15 & [tex]$25+8.25(15)$[/tex] & 148.75 & [tex]$(15, 148.75)$[/tex] \\
\hline
\end{tabular}

Equation: [tex]$t=25+8.25 w$[/tex]

Aaliyah needs [tex]$\$[/tex]135.75[tex]$ for a television. How many weeks will it take her to save enough money to buy a television?

$[/tex]\square$ weeks



Answer :

To determine how many weeks it will take Aaliyah to save enough money to buy a television that costs $135.75, we start with the given equation for her savings plan:

[tex]\[ t = 25 + 8.25w \][/tex]

where [tex]\( t \)[/tex] is the total amount of money saved and [tex]\( w \)[/tex] is the number of weeks she saves.

We need to find [tex]\( w \)[/tex] when [tex]\( t = 135.75 \)[/tex]. So, we set up the equation:

[tex]\[ 135.75 = 25 + 8.25w \][/tex]

To solve for [tex]\( w \)[/tex], follow these steps:

1. Subtract 25 from both sides of the equation to isolate the term involving [tex]\( w \)[/tex]:

[tex]\[ 135.75 - 25 = 8.25w \][/tex]
[tex]\[ 110.75 = 8.25w \][/tex]

2. Next, divide both sides by 8.25 to solve for [tex]\( w \)[/tex]:

[tex]\[ \frac{110.75}{8.25} = w \][/tex]

This gives us:

[tex]\[ w \approx 13.424242424242424 \][/tex]

Rounding to two decimal places, [tex]\( w \approx 13.42 \)[/tex].

Thus, it will take Aaliyah approximately 13.42 weeks to save enough money to buy the television.