Suppose that [tex]\( f(1) = 2 \)[/tex], [tex]\( f(4) = 6 \)[/tex], [tex]\( f'(1) = 3 \)[/tex], [tex]\( f'(4) = 2 \)[/tex], and [tex]\( f'' \)[/tex] is continuous.

Find the value of
[tex]\[ \int_1^4 x f''(x) \, dx. \][/tex]



Answer :

To find the value of [tex]\(\int_1^4 x f^{\prime \prime}(x) \, dx\)[/tex], let's proceed step-by-step.

1. Given Data:
- [tex]\(f(1) = 2\)[/tex]
- [tex]\(f(4) = 6\)[/tex]
- [tex]\(f'(1) = 3\)[/tex]
- [tex]\(f'(4) = 2\)[/tex]
- [tex]\(f''(x)\)[/tex] is continuous

2. Integration by Parts:
We use integration by parts for the integral [tex]\(\int_1^4 x f^{\prime \prime}(x) \, dx\)[/tex]. Let:
- [tex]\(u = x\)[/tex]
- [tex]\(dv = f''(x) dx\)[/tex]

Then, we compute:
- [tex]\(du = dx\)[/tex]
- [tex]\(v = f'(x)\)[/tex] (because the integral of [tex]\(f''(x)\)[/tex] is [tex]\(f'(x)\)[/tex])

According to integration by parts,
[tex]\[ \int u \, dv = uv - \int v \, du. \][/tex]
Substituting in our functions, we get:
[tex]\[ \int_1^4 x f^{\prime \prime}(x) \, dx = \left[ x f'(x) \right]_1^4 - \int_1^4 f'(x) \, dx. \][/tex]

3. Evaluate [tex]\( \left[ x f'(x) \right]_1^4\)[/tex]:
[tex]\[ [x f'(x)]_1^4 = 4f'(4) - 1f'(1). \][/tex]
Plugging in the given values:
[tex]\[ 4f'(4) - 1f'(1) = 4 \cdot 2 - 1 \cdot 3 = 8 - 3 = 5. \][/tex]

4. Evaluate [tex]\(\int_1^4 f'(x) \, dx\)[/tex]:
- By the Fundamental Theorem of Calculus, [tex]\(\int_1^4 f'(x) \, dx = f(4) - f(1)\)[/tex].
- Plugging in the given values:
[tex]\[ f(4) - f(1) = 6 - 2 = 4. \][/tex]

5. Combine Results:
Substitute these results back into the expression from step 2:
[tex]\[ \int_1^4 x f^{\prime \prime}(x) \, dx = 5 - 4 = 1. \][/tex]

Thus, the value of [tex]\(\int_1^4 x f^{\prime \prime}(x) \, dx\)[/tex] is [tex]\(\boxed{1}\)[/tex].