Answer :

Let's solve the given expression step-by-step:

[tex]\[ 2^3 \cdot 3^2 \cdot 4^0 \][/tex]

First, let's evaluate each term individually:

1. [tex]\( 2^3 \)[/tex]: This means 2 raised to the power of 3.
[tex]\[ 2^3 = 2 \times 2 \times 2 = 8 \][/tex]

2. [tex]\( 3^2 \)[/tex]: This means 3 raised to the power of 2.
[tex]\[ 3^2 = 3 \times 3 = 9 \][/tex]

3. [tex]\( 4^0 \)[/tex]: Any non-zero number raised to the power of 0 is 1.
[tex]\[ 4^0 = 1 \][/tex]

Now, let's multiply the results of these individual terms together:

[tex]\[ 8 \cdot 9 \cdot 1 \][/tex]

First, multiply 8 and 9:
[tex]\[ 8 \times 9 = 72 \][/tex]

Next, multiply the result by 1:
[tex]\[ 72 \times 1 = 72 \][/tex]

So, the final result of the expression [tex]\( 2^3 \cdot 3^2 \cdot 4^0 \)[/tex] is:
[tex]\[ 72 \][/tex]