Question 1 (5 points)

Find the determinant of

[tex]\[C=\left[\begin{array}{cc}3 & -2 \\ -5 & -7\end{array}\right]\][/tex]

A. [tex]\(-41\)[/tex]
B. [tex]\(-31\)[/tex]
C. 31
D. 95



Answer :

To find the determinant of the matrix [tex]\( C = \begin{pmatrix} 3 & -2 \\ -5 & -7 \end{pmatrix} \)[/tex], we will use the formula for the determinant of a 2x2 matrix. The formula is given by:

[tex]\[ \text{det}(C) = ad - bc \][/tex]

where [tex]\( C = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \)[/tex].

For the given matrix [tex]\( C \)[/tex]:

[tex]\[ a = 3, \quad b = -2, \quad c = -5, \quad d = -7 \][/tex]

Plugging these values into the formula, we get:

[tex]\[ \text{det}(C) = (3 \cdot -7) - (-2 \cdot -5) \][/tex]

First, compute the product [tex]\( 3 \cdot -7 \)[/tex]:

[tex]\[ 3 \cdot -7 = -21 \][/tex]

Next, compute the product [tex]\(-2 \cdot -5\)[/tex]:

[tex]\[ -2 \cdot -5 = 10 \][/tex]

Now, subtract the second product from the first:

[tex]\[ \text{det}(C) = -21 - 10 = -31 \][/tex]

Thus, the determinant of matrix [tex]\( C \)[/tex] is [tex]\( -31 \)[/tex].

Among the given options, the correct answer is:
[tex]\[ \boxed{-31} \][/tex]