Find the simplified product.

[tex]\[
\frac{b-5}{2b} \cdot \frac{b^2 + 3b}{b-5}
\][/tex]

A. [tex]\(\frac{b+3}{2}\)[/tex]

B. [tex]\(b+3\)[/tex]

C. [tex]\(\frac{2}{b+3}\)[/tex]

D. [tex]\(2b+6\)[/tex]



Answer :

Certainly! Let's find the simplified product step by step for the given expression:

[tex]\[ \frac{(b-5)}{2b} \cdot \frac{b^2 + 3b}{b-5} \][/tex]

### Step 1: Write the Expression
First, let's clearly write the expression we need to simplify:

[tex]\[ \frac{(b-5)}{2b} \cdot \frac{b^2 + 3b}{b-5} \][/tex]

### Step 2: Simplify the Numerators and Denominators Individually

Notice that in the product of two fractions, we can multiply the numerators and denominators directly:

[tex]\[ \frac{(b-5)(b^2 + 3b)}{2b(b-5)} \][/tex]

### Step 3: Cancel Common Factors

Next, we can cancel the common factor of [tex]\((b-5)\)[/tex] from both the numerator and the denominator:


[tex]\[ \frac{\cancel{(b-5)}(b^2 + 3b)}{2b\cancel{(b-5)}} \][/tex]

This results in:

[tex]\[ \frac{b^2 + 3b}{2b} \][/tex]

### Step 4: Simplify the Fraction

Now, we simplify the resulting fraction by dividing each term in the numerator by the denominator:

[tex]\[ \frac{b^2}{2b} + \frac{3b}{2b} \][/tex]

Simplify each term separately:

1. [tex]\(\frac{b^2}{2b} = \frac{b \cdot b}{2b} = \frac{b}{2}\)[/tex]
2. [tex]\(\frac{3b}{2b} = \frac{3 \cdot b}{2 \cdot b} = \frac{3}{2}\)[/tex]

So the combined expression becomes:

[tex]\[ \frac{b}{2} + \frac{3}{2} \][/tex]

### Step 5: Write the Final Simplified Expression

Combining the terms, we get:

[tex]\[ \frac{b}{2} + \frac{3}{2} = 0.5b + 1.5 \][/tex]

Therefore, the simplified product is:

[tex]\[ 0.5b + 1.5 \][/tex]

Comparing with the options provided:
- [tex]\(\frac{b+3}{2}\)[/tex]
- [tex]\(b+3\)[/tex]
- [tex]\(\frac{2}{b+3}\)[/tex]
- [tex]\(2b+6\)[/tex]

The given options do not exactly match [tex]\(0.5b + 1.5\)[/tex], which is the correct simplified form of the product!