A satellite launch rocket has a cylindrical fuel tank. The fuel tank can hold [tex]V[/tex] cubic meters of fuel. If the tank measures [tex]d[/tex] meters across, what is the height of the tank in meters?

A. [tex]\frac{2V}{\pi d^2}[/tex]
B. [tex]\frac{4V}{d^2}[/tex]
C. [tex]\frac{y}{x^3}[/tex]
D. [tex]\frac{4V}{\pi^N}[/tex]
E. [tex]\frac{sV}{n d}[/tex]



Answer :

To find the height [tex]\( h \)[/tex] of a cylindrical fuel tank given its volume [tex]\( V \)[/tex] and diameter [tex]\( d \)[/tex], we can follow these steps:

1. Understand the Volume Formula for a Cylinder:
The volume [tex]\( V \)[/tex] of a cylinder is given by the formula:
[tex]\[ V = \pi r^2 h \][/tex]
where [tex]\( r \)[/tex] is the radius of the base of the cylinder and [tex]\( h \)[/tex] is its height.

2. Relate Diameter to Radius:
Since the diameter [tex]\( d \)[/tex] is twice the radius [tex]\( r \)[/tex], we have:
[tex]\[ r = \frac{d}{2} \][/tex]

3. Substitute the Radius into the Volume Formula:
Replace [tex]\( r \)[/tex] in the volume formula with [tex]\( \frac{d}{2} \)[/tex]:
[tex]\[ V = \pi \left( \frac{d}{2} \right)^2 h \][/tex]

4. Simplify the Equation:
Simplify the equation for volume:
[tex]\[ V = \pi \left( \frac{d^2}{4} \right)h \][/tex]
[tex]\[ V = \frac{\pi d^2}{4} h \][/tex]

5. Solve for the Height [tex]\( h \)[/tex]:
Rearrange the equation to solve for [tex]\( h \)[/tex]:
[tex]\[ V = \frac{\pi d^2}{4} h \implies h = \frac{4V}{\pi d^2} \][/tex]

Thus, the height of the tank in meters is given by:
[tex]\[ h = \frac{4V}{\pi d^2} \][/tex]

From the given choices, this corresponds to option B:
[tex]\[ \boxed{\frac{4V}{d^2}} \][/tex]