The equation [tex]r = 3c + 5[/tex] represents the values shown in the table below.

\begin{tabular}{|c|c|c|c|c|}
\hline
[tex]$c$[/tex] & 6 & 8 & 12 & 18 \\
\hline
[tex]$r$[/tex] & 23 & 29 & ? & 59 \\
\hline
\end{tabular}

What is the missing value in the table?

A. 12
B. 35
C. 41
D. 44



Answer :

Let's solve for the missing value in the table using the equation provided, [tex]\( r = 3c + 5 \)[/tex].

We are given various values of [tex]\( c \)[/tex] and corresponding values of [tex]\( r \)[/tex]. Our goal is to find the value of [tex]\( r \)[/tex] when [tex]\( c = 12 \)[/tex].

Given:
[tex]\[ c = 12 \][/tex]

Substitute [tex]\( c \)[/tex] into the equation [tex]\( r = 3c + 5 \)[/tex]:

[tex]\[ r = 3(12) + 5 \][/tex]

First, compute the product:
[tex]\[ 3 \times 12 = 36 \][/tex]

Next, add 5 to the result:
[tex]\[ 36 + 5 = 41 \][/tex]

Therefore, when [tex]\( c = 12 \)[/tex], the value of [tex]\( r \)[/tex] is [tex]\( 41 \)[/tex].

Thus, the missing value in the table is 41.

The answer is:

41