Let's solve for the missing value in the table using the equation provided, [tex]\( r = 3c + 5 \)[/tex].
We are given various values of [tex]\( c \)[/tex] and corresponding values of [tex]\( r \)[/tex]. Our goal is to find the value of [tex]\( r \)[/tex] when [tex]\( c = 12 \)[/tex].
Given:
[tex]\[ c = 12 \][/tex]
Substitute [tex]\( c \)[/tex] into the equation [tex]\( r = 3c + 5 \)[/tex]:
[tex]\[ r = 3(12) + 5 \][/tex]
First, compute the product:
[tex]\[ 3 \times 12 = 36 \][/tex]
Next, add 5 to the result:
[tex]\[ 36 + 5 = 41 \][/tex]
Therefore, when [tex]\( c = 12 \)[/tex], the value of [tex]\( r \)[/tex] is [tex]\( 41 \)[/tex].
Thus, the missing value in the table is 41.
The answer is:
41