Answer :
Sure, I will provide a detailed, step-by-step solution for this division problem: [tex]\( 400 \div 8000 \)[/tex].
### Step-by-Step Solution
1. Set Up the Division:
We start with the dividend [tex]\( 8000 \)[/tex] and the divisor [tex]\( 400 \)[/tex].
[tex]\[ 8000 \div 400 \][/tex]
2. Divide the Dividend by the Divisor:
Determine how many times [tex]\( 400 \)[/tex] can go into [tex]\( 8000 \)[/tex]. To do this, we will divide the larger number, [tex]\( 8000 \)[/tex], by the smaller number, [tex]\( 400 \)[/tex].
3. Finding the Quotient:
We find the integer part of the division [tex]\( 8000 \div 400 \)[/tex].
[tex]\[ 8000 \div 400 = 20 \][/tex]
The quotient is [tex]\( 20 \)[/tex].
4. Finding the Remainder:
Verify if there is any remainder by multiplying the quotient by the divisor and subtracting it from the dividend.
[tex]\[ 20 \times 400 = 8000 \][/tex]
Now, subtract this product from the original dividend:
[tex]\[ 8000 - 8000 = 0 \][/tex]
So, there is no remainder.
### Summary
By dividing [tex]\( 8000 \)[/tex] by [tex]\( 400 \)[/tex], we find that the quotient is [tex]\( 20 \)[/tex] and the remainder is [tex]\( 0 \)[/tex].
[tex]\[ \boxed{20} \quad \text{(quotient)}, \quad \boxed{0} \quad \text{(remainder)} \][/tex]
### Step-by-Step Solution
1. Set Up the Division:
We start with the dividend [tex]\( 8000 \)[/tex] and the divisor [tex]\( 400 \)[/tex].
[tex]\[ 8000 \div 400 \][/tex]
2. Divide the Dividend by the Divisor:
Determine how many times [tex]\( 400 \)[/tex] can go into [tex]\( 8000 \)[/tex]. To do this, we will divide the larger number, [tex]\( 8000 \)[/tex], by the smaller number, [tex]\( 400 \)[/tex].
3. Finding the Quotient:
We find the integer part of the division [tex]\( 8000 \div 400 \)[/tex].
[tex]\[ 8000 \div 400 = 20 \][/tex]
The quotient is [tex]\( 20 \)[/tex].
4. Finding the Remainder:
Verify if there is any remainder by multiplying the quotient by the divisor and subtracting it from the dividend.
[tex]\[ 20 \times 400 = 8000 \][/tex]
Now, subtract this product from the original dividend:
[tex]\[ 8000 - 8000 = 0 \][/tex]
So, there is no remainder.
### Summary
By dividing [tex]\( 8000 \)[/tex] by [tex]\( 400 \)[/tex], we find that the quotient is [tex]\( 20 \)[/tex] and the remainder is [tex]\( 0 \)[/tex].
[tex]\[ \boxed{20} \quad \text{(quotient)}, \quad \boxed{0} \quad \text{(remainder)} \][/tex]