Fill in the [tex]y[/tex] values of the [tex]t[/tex]-table for the function [tex]y=\sqrt[3]{x}[/tex].

\begin{tabular}{c|c}
[tex]$x$[/tex] & [tex]$y$[/tex] \\
\hline
-8 & [tex]$\square$[/tex] \\
-1 & [tex]$\square$[/tex] \\
0 & [tex]$\square$[/tex] \\
1 & [tex]$\square$[/tex] \\
8 & [tex]$\square$[/tex]
\end{tabular}

This is the graph of the function: [tex]y=\sqrt[3]{x}[/tex].



Answer :

To fill in the [tex]\( y \)[/tex] values for the function [tex]\( y = \sqrt[3]{x} \)[/tex], we will evaluate the function at each given [tex]\( x \)[/tex]-value. Here's the process:

1. Calculate [tex]\( y \)[/tex] for [tex]\( x = -8 \)[/tex]:
- [tex]\( y = \sqrt[3]{-8} \)[/tex].
- The result is [tex]\( y = (1.0000000000000002 + 1.7320508075688772i) \)[/tex]. This value is a complex number.

2. Calculate [tex]\( y \)[/tex] for [tex]\( x = -1 \)[/tex]:
- [tex]\( y = \sqrt[3]{-1} \)[/tex].
- The result is [tex]\( y = (0.5000000000000001 + 0.8660254037844386i) \)[/tex]. This is also a complex number.

3. Calculate [tex]\( y \)[/tex] for [tex]\( x = 0 \)[/tex]:
- [tex]\( y = \sqrt[3]{0} \)[/tex].
- The result is [tex]\( y = 0.0 \)[/tex].

4. Calculate [tex]\( y \)[/tex] for [tex]\( x = 1 \)[/tex]:
- [tex]\( y = \sqrt[3]{1} \)[/tex].
- The result is [tex]\( y = 1.0 \)[/tex].

5. Calculate [tex]\( y \)[/tex] for [tex]\( x = 8 \)[/tex]:
- [tex]\( y = \sqrt[3]{8} \)[/tex].
- The result is [tex]\( y = 2.0 \)[/tex].

Now, we can fill in the [tex]\( t \)[/tex]-table with these computed [tex]\( y \)[/tex]-values:

[tex]\[ \begin{tabular}{c|c|} x & y \\ \hline -8 & (1.0000000000000002 + 1.7320508075688772i) \\ -1 & (0.5000000000000001 + 0.8660254037844386i) \\ 0 & 0.0 \\ 1 & 1.0 \\ 8 & 2.0 \\ \end{tabular} \][/tex]

Here is the final [tex]\( t \)[/tex]-table with all the [tex]\( y \)[/tex]-values for the given [tex]\( x \)[/tex]-values:

[tex]\[ \begin{array}{c|c} x & y \\ \hline -8 & (1.0000000000000002 + 1.7320508075688772i) \\ -1 & (0.5000000000000001 + 0.8660254037844386i) \\ 0 & 0.0 \\ 1 & 1.0 \\ 8 & 2.0 \\ \end{array} \][/tex]