Simplify the expression:
[tex]\[ 3 \sqrt[3]{3} + 2 \sqrt[3]{81} \][/tex]

A. The expression cannot be simplified any further.
B. [tex]\( 9 \sqrt[3]{3} \)[/tex]
C. [tex]\( 54 \sqrt[3]{3} \)[/tex]
D. [tex]\( 8 \sqrt[3]{3} \)[/tex]



Answer :

To simplify the expression [tex]\( 3 \sqrt[3]{3} + 2 \sqrt[3]{81} \)[/tex], let's break it down step-by-step.

1. Evaluate the Terms Separately:

- First, take the term [tex]\( 3 \sqrt[3]{3} \)[/tex]:
[tex]\[ 3 \sqrt[3]{3} \][/tex]
- Second, take the term [tex]\( 2 \sqrt[3]{81} \)[/tex]:
[tex]\[ 2 \sqrt[3]{81} \][/tex]

2. Simplify [tex]\( \sqrt[3]{81} \)[/tex]:

- Notice that [tex]\( 81 \)[/tex] can be expressed as [tex]\( 3^4 \)[/tex]:
[tex]\[ 81 = 3^4 \][/tex]
- Therefore, [tex]\( \sqrt[3]{81} \)[/tex] can be written as [tex]\( \sqrt[3]{3^4} \)[/tex]:
[tex]\[ \sqrt[3]{81} = \sqrt[3]{3^4} \][/tex]
- Using the property of exponents, [tex]\( \sqrt[3]{3^4} = 3^{4/3} \)[/tex]:
[tex]\[ \sqrt[3]{81} = 3^{4/3} \][/tex]

3. Combine the [tex]\( \sqrt[3]{81} \)[/tex] term:

- Replace [tex]\( \sqrt[3]{81} \)[/tex] in the original term [tex]\( 2 \sqrt[3]{81} \)[/tex] with [tex]\( 3^{4/3} \)[/tex]:
[tex]\[ 2 \sqrt[3]{81} = 2 \cdot 3^{4/3} \][/tex]

4. Express [tex]\( 3^{4/3} \)[/tex] in a more familiar form:

- We know [tex]\( 3^{4/3} \)[/tex] can be broken down as:
[tex]\[ 3^{4/3} = 3^{1 + 1/3} = 3 \cdot 3^{1/3} \][/tex]

5. Simplify [tex]\( 2 \cdot 3^{4/3} \)[/tex]:

- Substitute [tex]\( 3 \cdot 3^{1/3} \)[/tex] back into the term [tex]\( 2 \cdot 3^{4/3} \)[/tex]:
[tex]\[ 2 \cdot 3^{4/3} = 2 \cdot (3 \cdot 3^{1/3}) = 2 \cdot 3 \cdot 3^{1/3} = 6 \cdot 3^{1/3} \][/tex]

6. Combine the Expressions:

- Now combine the simplified terms [tex]\( 3 \sqrt[3]{3} \)[/tex] and [tex]\( 6 \sqrt[3]{3} \)[/tex]:
[tex]\[ 3 \sqrt[3]{3} + 6 \sqrt[3]{3} \][/tex]

7. Add Like Terms:

- Since both terms have [tex]\( \sqrt[3]{3} \)[/tex], add the coefficients:
[tex]\[ 3 + 6 = 9 \][/tex]
- Therefore, the combined expression is:
[tex]\[ 9 \sqrt[3]{3} \][/tex]

Final Answer:

So, [tex]\(\boxed{9 \sqrt[3]{3}}\)[/tex].