Simplify the radical expression:

[tex] -\sqrt{\frac{100}{49}} [/tex]

A. [tex] \frac{10}{7} [/tex]
B. Not possible
C. [tex] -\frac{\sqrt{10}}{\sqrt{7}} [/tex]
D. [tex] -\frac{10}{7} [/tex]



Answer :

Let's simplify the expression [tex]\(-\sqrt{\frac{100}{49}}\)[/tex].

1. Expression Inside the Square Root:
[tex]\[ \frac{100}{49} \][/tex]

2. Simplify the Fraction:
The fraction [tex]\(\frac{100}{49}\)[/tex] in its simplest form stays the same since both numerator (100) and denominator (49) are already in their lowest terms.

3. Taking the Square Root:
Next, we take the square root of both the numerator and the denominator separately:
[tex]\[ \sqrt{\frac{100}{49}} = \frac{\sqrt{100}}{\sqrt{49}} \][/tex]

4. Calculate the Square Roots:
- The square root of 100 is 10 because [tex]\(10 \times 10 = 100\)[/tex].
- The square root of 49 is 7 because [tex]\(7 \times 7 = 49\)[/tex].

5. Fraction after Simplifying Square Roots:
[tex]\[ \frac{\sqrt{100}}{\sqrt{49}} = \frac{10}{7} \][/tex]

6. Incorporate the Negative Sign:
Since the original expression is [tex]\(-\sqrt{\frac{100}{49}}\)[/tex], we need to apply the negative sign to our simplified result:
[tex]\[ -\sqrt{\frac{100}{49}} = -\frac{10}{7} \][/tex]

Therefore, the simplified form of the given radical expression is:
[tex]\[ -\frac{10}{7} \][/tex]

Among the multiple-choice options given, the correct one is:
[tex]\[ -\frac{10}{7} \][/tex]