Simplify the radical expression:

[tex]\[ \sqrt{\frac{121}{25}} \][/tex]

A. [tex]\(\frac{\sqrt{11}}{\sqrt{5}}\)[/tex]

B. [tex]\(\frac{121}{5}\)[/tex]

C. [tex]\(\frac{11}{5}\)[/tex]

D. Not possible



Answer :

To simplify the radical expression [tex]\(\sqrt{\frac{121}{25}}\)[/tex], follow these steps:

1. Identify the components of the fraction inside the square root:
- The numerator is 121.
- The denominator is 25.

2. Break down the square root of a fraction into the square roots of the numerator and the denominator:
[tex]\[ \sqrt{\frac{121}{25}} = \frac{\sqrt{121}}{\sqrt{25}} \][/tex]

3. Find the square root of the numerator (121):
- [tex]\(\sqrt{121} = 11\)[/tex]

4. Find the square root of the denominator (25):
- [tex]\(\sqrt{25} = 5\)[/tex]

5. Substitute these square roots back into the fraction:
[tex]\[ \frac{\sqrt{121}}{\sqrt{25}} = \frac{11}{5} \][/tex]

Hence, the simplified form of [tex]\(\sqrt{\frac{121}{25}}\)[/tex] is [tex]\(\frac{11}{5}\)[/tex]. Therefore, the correct answer is:
[tex]\[ \frac{11}{5} \][/tex]