Answer :

Sure, let's simplify the given radical expression step by step.

The given expression to simplify is:

[tex]\[ \sqrt{8} \cdot \sqrt{18} \cdot 5 \cdot \sqrt{4} \][/tex]

### Step 1: Break down each square root term

First, let's simplify the square roots individually.

- [tex]\(\sqrt{8}\)[/tex]:
[tex]\[ \sqrt{8} = \sqrt{4 \cdot 2} = \sqrt{4} \cdot \sqrt{2} = 2\sqrt{2} \][/tex]

- [tex]\(\sqrt{18}\)[/tex]:
[tex]\[ \sqrt{18} = \sqrt{9 \cdot 2} = \sqrt{9} \cdot \sqrt{2} = 3\sqrt{2} \][/tex]

- [tex]\(\sqrt{4}\)[/tex]:
[tex]\[ \sqrt{4} = 2 \][/tex]

### Step 2: Substitute the simplified values back into the original expression

Replace the simplified square root values:

[tex]\[ \sqrt{8} \cdot \sqrt{18} \cdot 5 \cdot \sqrt{4} = (2\sqrt{2}) \cdot (3\sqrt{2}) \cdot 5 \cdot 2 \][/tex]

### Step 3: Multiply the coefficients

Now, combine the coefficients (constants) together:

[tex]\[ 2 \cdot 3 \cdot 5 \cdot 2 = 60 \][/tex]

### Step 4: Multiply the square root terms

Now, multiply the radical parts:

[tex]\[ \sqrt{2} \cdot \sqrt{2} = \sqrt{2 \cdot 2} = \sqrt{4} = 2 \][/tex]

### Step 5: Combine the results

Multiplying the coefficient (60) by the result of the radical parts (2):

[tex]\[ 60 \cdot 2 = 120 \][/tex]

### Final Answer

The simplified radical expression is:

[tex]\[ 120 \][/tex]

Thus, the exact value of the given radical expression is [tex]\(120\)[/tex].