A circular walking path is modeled by [tex]$(x-2)^2+(y+3)^2=36$[/tex], where all measurements are in meters. What are the center and radius of the path?

A. Center at [tex][tex]$(2,-3)$[/tex] ; r=36[/tex]
B. Center at [tex]$(2,-3)$ ; r=6[/tex]
C. Center at [tex][tex]$(-2,3)$[/tex] ; r=36[/tex]
D. Center at [tex]$(-2,3)$ ; r=6[/tex]



Answer :

To determine the center and radius of the circle, we start by comparing the given equation of the circle [tex]\((x-2)^2 + (y+3)^2 = 36\)[/tex] with the general form of a circle's equation [tex]\((x-h)^2 + (y-k)^2 = r^2\)[/tex]. The general form helps us identify the center [tex]\((h, k)\)[/tex] and the square of the radius [tex]\(r^2\)[/tex].

Let's break it down step by step:

1. Identify the Center:
- The equation given is [tex]\((x-2)^2 + (y+3)^2 = 36\)[/tex].
- Here, [tex]\((h, k)\)[/tex] are the coordinates that shift the circle from the origin.
- From the comparison, we see that [tex]\(h = 2\)[/tex] and [tex]\(k = -3\)[/tex].

Therefore, the center of the circle is:
[tex]\[ (h, k) = (2, -3) \][/tex]

2. Determine the Radius:
- The right-hand side of the equation is the radius squared, which is [tex]\(36\)[/tex].
- To find the radius [tex]\(r\)[/tex], we take the square root of [tex]\(36\)[/tex]:
[tex]\[ r = \sqrt{36} = 6 \][/tex]

Thus, the center of the circle is [tex]\((2, -3)\)[/tex] and the radius is [tex]\(6\)[/tex].

Correct Answer:
- Center at [tex]\((2,-3)\)[/tex] and radius [tex]\(r = 6\)[/tex]

Option with:
- Center at [tex]\((2,-3)\)[/tex] ; [tex]\(r=6\)[/tex]