Answer :

Let's evaluate the expression step-by-step.

The given expression is:

[tex]\[ \frac{-7}{2 \sqrt[5]{3^2}} \][/tex]

First, evaluate the term inside the root:

[tex]\[ 3^2 = 9 \][/tex]

Now, we need to find the fifth root of 9. Let's denote this as [tex]\(9^{1/5}\)[/tex]. So we have:

[tex]\[ \sqrt[5]{9} = 9^{1/5} \approx 1.5518455739153598 \][/tex]

Next, multiply this result by 2:

[tex]\[ 2 \times 9^{1/5} \approx 2 \times 1.5518455739153598 = 3.1036911478307196 \][/tex]

Now, we divide the numerator by this result:

[tex]\[ \frac{-7}{3.1036911478307196} \approx -2.25537905242039 \][/tex]

So the final answer to the expression is:

[tex]\[ \frac{-7}{2 \sqrt[5]{3^2}} \approx -2.25537905242039 \][/tex]