Find [tex]\( x \)[/tex] if [tex]\( m\angle 1 = 2x + 10 \)[/tex] and [tex]\( m\angle 2 = 3x - 6 \)[/tex].

A. 16
B. 4
C. 42
D. 24



Answer :

To find the value of [tex]\( x \)[/tex], we need to solve the system of equations given:

[tex]\[ m<1 = 2x + 10 \][/tex]
[tex]\[ m<2 = 3x - 6 \][/tex]

Since [tex]\( m<1 \)[/tex] and [tex]\( m<2 \)[/tex] are stated to be equal, we set the equations equal to each other:
[tex]\[ 2x + 10 = 3x - 6 \][/tex]

Next, we solve for [tex]\( x \)[/tex] by isolating [tex]\( x \)[/tex] on one side of the equation.

1. Subtract [tex]\( 2x \)[/tex] from both sides:
[tex]\[ 2x + 10 - 2x = 3x - 6 - 2x \][/tex]
Simplifies to:
[tex]\[ 10 = x - 6 \][/tex]

2. Add 6 to both sides to isolate [tex]\( x \)[/tex]:
[tex]\[ 10 + 6 = x - 6 + 6 \][/tex]
Simplifies to:
[tex]\[ 16 = x \][/tex]

So, the value of [tex]\( x \)[/tex] is [tex]\( \boxed{16} \)[/tex].