Product and Quotient Functions

Given:
[tex]\[ m(x) = x^2 + 4x \][/tex]
[tex]\[ n(x) = x \][/tex]

To find:
[tex]\[ (mn)(x) = m(x) \cdot n(x) \][/tex]

[tex]\[
(mn)(x) = (x^2 + 4x) \cdot x
\][/tex]

Simplify:
[tex]\[ (mn)(x) = x^3 + 4x^2 \][/tex]

Evaluate [tex]\((mn)(x)\)[/tex] for [tex]\(x = -3\)[/tex]:

[tex]\[ (mn)(-3) = (-3)^3 + 4(-3)^2 \][/tex]
[tex]\[ (mn)(-3) = -27 + 4 \cdot 9 \][/tex]
[tex]\[ (mn)(-3) = -27 + 36 \][/tex]
[tex]\[ (mn)(-3) = 9 \][/tex]

Therefore,
[tex]\[ (mn)(-3) = 9 \][/tex]



Answer :

Sure, I can help you evaluate [tex]\((m n)(x)\)[/tex] for [tex]\(x = -3\)[/tex]. Let's break it down step by step.

1. Define the functions:
- [tex]\(m(x) = x^2 + 4x\)[/tex]
- [tex]\(n(x) = x\)[/tex]

2. Determine [tex]\((m n)(x): - \((m n)(x)\)[/tex] means applying [tex]\(n(x)\)[/tex] first and then applying [tex]\(m\)[/tex] to the result of [tex]\(n(x)\)[/tex].
- Since [tex]\(n(x) = x\)[/tex], substituting [tex]\(n(x)\)[/tex] into [tex]\(m(x)\)[/tex], we get:
[tex]\[ (m n)(x) = m(n(x)) = m(x) \][/tex]
- Therefore, [tex]\((m n)(x) = x^2 + 4x\)[/tex], as [tex]\(m(x)\)[/tex] itself.

3. Evaluate [tex]\((m n)(-3)\)[/tex]:
- First, substitute [tex]\(x = -3\)[/tex] into [tex]\(m(x)\)[/tex]:
[tex]\[ m(-3) = (-3)^2 + 4(-3) \][/tex]
- Calculate the terms:
[tex]\[ (-3)^2 = 9 \][/tex]
[tex]\[ 4(-3) = -12 \][/tex]

4. Combine the results:
- Add the terms together to get:
[tex]\[ m(-3) = 9 - 12 = -3 \][/tex]
- So, [tex]\((m n)(-3) = m(-3) = -3\)[/tex].

Therefore, the evaluation of [tex]\((m n)(-3)\)[/tex] is:

[tex]\[ (m n)(-3) = -3 \][/tex]