Consider the following sets:

[tex]\[ U = \{\text{ordered pairs on a coordinate plane}\} \][/tex]
[tex]\[ A = \{\text{ordered pair solutions to } y = x\} \][/tex]
[tex]\[ B = \{\text{ordered pair solutions to } y = 2x\} \][/tex]

Which ordered pair satisfies [tex]\( A \cap B \)[/tex]?

A. [tex]\((0,0)\)[/tex]
B. [tex]\((1,1)\)[/tex]
C. [tex]\((1,2)\)[/tex]
D. [tex]\((2,1)\)[/tex]



Answer :

Sure, let's solve this step-by-step to find the ordered pair that satisfies both equations [tex]\( y = x \)[/tex] and [tex]\( y = 2x \)[/tex].

To determine the intersection [tex]\( A \cap B \)[/tex], we need to find points [tex]\((x, y)\)[/tex] that satisfy both equations simultaneously.

1. Equation [tex]\( y = x \)[/tex]
- This means that for any point [tex]\((x, y)\)[/tex] on this line, the [tex]\(y\)[/tex]-coordinate is equal to the [tex]\(x\)[/tex]-coordinate.

2. Equation [tex]\( y = 2x \)[/tex]
- Here, the [tex]\(y\)[/tex]-coordinate is double the [tex]\(x\)[/tex]-coordinate.

To find the intersection of these two sets, we need [tex]\((x, y)\)[/tex] such that:

[tex]\[ y = x \][/tex]
and
[tex]\[ y = 2x \][/tex]

This implies:

[tex]\[ x = 2x \][/tex]

Solving for [tex]\(x\)[/tex], we get:

[tex]\[ x - 2x = 0 \][/tex]
[tex]\[ -x = 0 \][/tex]
[tex]\[ x = 0 \][/tex]

Substitute [tex]\( x = 0 \)[/tex] back into either equation to find [tex]\( y \)[/tex]:

[tex]\[ y = x \][/tex]
[tex]\[ y = 0 \][/tex]

So, the point [tex]\((0, 0)\)[/tex] satisfies both equations.

Let's verify the other given options:

- Option [tex]\((1, 1)\)[/tex]:
- [tex]\( y = x \Rightarrow 1 = 1 \)[/tex] (True)
- [tex]\( y = 2x \Rightarrow 1 = 2 \cdot 1 = 2 \)[/tex] (False)

- Option [tex]\((1, 2)\)[/tex]:
- [tex]\( y = x \Rightarrow 2 = 1 \)[/tex] (False)
- [tex]\( y = 2x \Rightarrow 2 = 2 \cdot 1 = 2 \)[/tex] (True)

- Option [tex]\((2, 1)\)[/tex]:
- [tex]\( y = x \Rightarrow 1 = 2 \)[/tex] (False)
- [tex]\( y = 2x \Rightarrow 1 = 2 \cdot 2 = 4 \)[/tex] (False)

Therefore, the only option that satisfies both [tex]\( y = x \)[/tex] and [tex]\( y = 2x \)[/tex] is:

[tex]\[ (0, 0) \][/tex]

So, the ordered pair that satisfies [tex]\( A \cap B \)[/tex] is [tex]\((0, 0)\)[/tex].