The number of bacteria in a culture decreases according to a continuous exponential decay model. The initial population in a study is 3100 bacteria, and there are 868 bacteria left after 5 minutes.

(a) Let [tex]$t$[/tex] be the time (in minutes) since the beginning of the study, and let [tex]$y$[/tex] be the number of bacteria at time [tex][tex]$t$[/tex][/tex]. Write a formula relating [tex]$y$[/tex] to [tex]$t$[/tex]. Use exact expressions to fill in the missing parts of the formula. Do not use approximations.

[tex]
y = \square e^{(\square t)}
[/tex]

(b) How many bacteria are there 17 minutes after the beginning of the study? Do not round any intermediate computations, and round your answer to the nearest whole number.

[tex]\square[/tex] bacteria



Answer :

Let's solve the problem step-by-step while answering each part:

### Part (a):
We need to derive the formula relating [tex]\( y \)[/tex] (the number of bacteria) to [tex]\( t \)[/tex] (the time in minutes).

1. Initial Information:
- Initial population ([tex]\( y_0 \)[/tex]): [tex]\( 3100 \)[/tex] bacteria
- Remaining population after time [tex]\( t \)[/tex]): [tex]\( 868 \)[/tex] bacteria after [tex]\( 5 \)[/tex] minutes

2. Exponential Decay Formula:
We use the model [tex]\( y = y_0 \cdot e^{kt} \)[/tex], where [tex]\( k \)[/tex] is the decay constant.

3. Calculate the Decay Constant [tex]\( k \)[/tex]:
We know that [tex]\( y = 868 \)[/tex] when [tex]\( t = 5 \)[/tex].
So, we can plug these values into our formula:

[tex]\[ 868 = 3100 \cdot e^{5k} \][/tex]

4. Solve for [tex]\( k \)[/tex]:
[tex]\[ \frac{868}{3100} = e^{5k} \][/tex]

[tex]\[ e^{5k} = \frac{868}{3100} \][/tex]

Taking the natural logarithm on both sides:

[tex]\[ 5k = \ln \left( \frac{868}{3100} \right) \][/tex]

[tex]\[ k = \frac{\ln \left( \frac{868}{3100} \right)}{5} \][/tex]

5. Formula:
Substituting [tex]\( k \)[/tex] back into our exponential decay formula, we get:

[tex]\[ y = 3100 \cdot e^{\left( \frac{\ln \left( \frac{868}{3100} \right)}{5} \right) t} \][/tex]

So the formula relating [tex]\( y \)[/tex] to [tex]\( t \)[/tex] is:

[tex]\[ y = 3100 \cdot e^{\left( \frac{\ln \left( \frac{868}{3100} \right)}{5} \right) t} \][/tex]

### Part (b):
Now we need to find the number of bacteria after 17 minutes.

1. Given:
[tex]\[ t = 17 \text{ minutes} \][/tex]

2. Using the Formula:
Plug [tex]\( t = 17 \)[/tex] into the formula we derived:

[tex]\[ y = 3100 \cdot e^{\left( \frac{\ln \left( \frac{868}{3100} \right)}{5} \times 17 \right)} \][/tex]

3. Calculate the Number of Bacteria:
Evaluating this expression directly:

[tex]\[ y \approx 41 \][/tex]

So, after 17 minutes, the number of bacteria in the culture is approximately 41.

### Final Answer:
(a) The formula relating [tex]\( y \)[/tex] to [tex]\( t \)[/tex] is:
[tex]\[ y = 3100 \cdot e^{\left( \frac{\ln \left( \frac{868}{3100} \right)}{5} \right) t} \][/tex]

(b) The number of bacteria after 17 minutes is:
[tex]\[ 41 \text{ bacteria} \][/tex]