Enter the correct answer in the box.

What is the standard form polynomial that represents this product?

[tex]\[
(-2m^3 + 3m^2 - m)(4m^2 + m - 5)
\][/tex]



Answer :

To find the product of the two polynomials [tex]\((-2m^3 + 3m^2 - m)(4m^2 + m - 5)\)[/tex], we need to multiply each term in the first polynomial by each term in the second polynomial and then combine like terms.

Let's denote the polynomials as:
[tex]\[ P(m) = -2m^3 + 3m^2 - m \][/tex]
[tex]\[ Q(m) = 4m^2 + m - 5 \][/tex]

We will multiply each term in [tex]\( P(m) \)[/tex] by each term in [tex]\( Q(m) \)[/tex]:

1. Multiply [tex]\(-2m^3\)[/tex] by each term in [tex]\( Q(m) \)[/tex]:
[tex]\[ -2m^3 \cdot 4m^2 = -8m^5 \][/tex]
[tex]\[ -2m^3 \cdot m = -2m^4 \][/tex]
[tex]\[ -2m^3 \cdot (-5) = 10m^3 \][/tex]

2. Multiply [tex]\( 3m^2 \)[/tex] by each term in [tex]\( Q(m) \)[/tex]:
[tex]\[ 3m^2 \cdot 4m^2 = 12m^4 \][/tex]
[tex]\[ 3m^2 \cdot m = 3m^3 \][/tex]
[tex]\[ 3m^2 \cdot (-5) = -15m^2 \][/tex]

3. Multiply [tex]\( -m \)[/tex] by each term in [tex]\( Q(m) \)[/tex]:
[tex]\[ -m \cdot 4m^2 = -4m^3 \][/tex]
[tex]\[ -m \cdot m = -m^2 \][/tex]
[tex]\[ -m \cdot (-5) = 5m \][/tex]

Now, we combine all these terms:
[tex]\[ -8m^5 - 2m^4 + 10m^3 + 12m^4 + 3m^3 - 15m^2 - 4m^3 - m^2 + 5m \][/tex]

Next, combine like terms:
[tex]\[ \text{Combine } m^5 \text{ terms: } -8m^5 \][/tex]
[tex]\[ \text{Combine } m^4 \text{ terms: } (-2m^4 + 12m^4 = 10m^4) \][/tex]
[tex]\[ \text{Combine } m^3 \text{ terms: } (10m^3 + 3m^3 - 4m^3 = 9m^3) \][/tex]
[tex]\[ \text{Combine } m^2 \text{ terms: } (-15m^2 - m^2 = -16m^2) \][/tex]
[tex]\[ \text{Combine } m \text{ terms: } 5m \][/tex]

Therefore, the standard form polynomial that represents the product is:
[tex]\[ -8m^5 + 10m^4 + 9m^3 - 16m^2 + 5m \][/tex]