Answer :
Sure! Let's solve the problem step by step. Our goal is to arrange the objects based on their total energy from least to greatest. We need to calculate the potential energy (PE) and kinetic energy (KE) for each object and then compare these energies.
### Step 1: Calculate the energies for each object
#### 1. The book
- Mass [tex]\( m = 0.75 \)[/tex] kg
- Height [tex]\( h = 1.5 \)[/tex] meters
Potential Energy (PE):
[tex]\[ PE_{\text{book}} = m \times g \times h = 0.75 \times 9.8 \times 1.5 = 11.025 \text{ joules} \][/tex]
Since the book is resting, it has no kinetic energy.
#### 2. The brick
- Mass [tex]\( m = 2.5 \)[/tex] kg
- Height [tex]\( h = 4 \)[/tex] meters
- Velocity [tex]\( v = 10 \)[/tex] meters/second
Potential Energy (PE):
[tex]\[ PE_{\text{brick}} = m \times g \times h = 2.5 \times 9.8 \times 4 = 98.0 \text{ joules} \][/tex]
Kinetic Energy (KE):
[tex]\[ KE_{\text{brick}} = \frac{1}{2} \times m \times v^2 = \frac{1}{2} \times 2.5 \times 10^2 = 125.0 \text{ joules} \][/tex]
Total energy for the brick:
[tex]\[ \text{Total energy}_{\text{brick}} = PE_{\text{brick}} + KE_{\text{brick}} = 98.0 + 125.0 = 223.0 \text{ joules} \][/tex]
#### 3. The ball
- Mass [tex]\( m = 0.25 \)[/tex] kg
- Velocity [tex]\( v = 10 \)[/tex] meters/second
Kinetic Energy (KE):
[tex]\[ KE_{\text{ball}} = \frac{1}{2} \times m \times v^2 = \frac{1}{2} \times 0.25 \times 10^2 = 12.5 \text{ joules} \][/tex]
Since the ball is rolling on flat ground, it has no potential energy.
### Step 2: Arrange the objects by their total energy
Now that we have calculated the energy for each object, we can sort them:
- Book: [tex]\( 11.025 \)[/tex] joules (all potential energy)
- Ball: [tex]\( 12.5 \)[/tex] joules (all kinetic energy)
- Brick: [tex]\( 223.0 \)[/tex] joules (sum of potential and kinetic energy)
So, the arrangement from least amount of energy to the most is:
1. Book: [tex]\( 11.025 \)[/tex] joules
2. Ball: [tex]\( 12.5 \)[/tex] joules
3. Brick: [tex]\( 223.0 \)[/tex] joules
Therefore, the energy distribution is:
[tex]\[ \begin{array}{c} \boxed{\text{Book}} \\ \boxed{\text{Ball}} \\ \boxed{\text{Brick}} \end{array} \][/tex]
### Step 1: Calculate the energies for each object
#### 1. The book
- Mass [tex]\( m = 0.75 \)[/tex] kg
- Height [tex]\( h = 1.5 \)[/tex] meters
Potential Energy (PE):
[tex]\[ PE_{\text{book}} = m \times g \times h = 0.75 \times 9.8 \times 1.5 = 11.025 \text{ joules} \][/tex]
Since the book is resting, it has no kinetic energy.
#### 2. The brick
- Mass [tex]\( m = 2.5 \)[/tex] kg
- Height [tex]\( h = 4 \)[/tex] meters
- Velocity [tex]\( v = 10 \)[/tex] meters/second
Potential Energy (PE):
[tex]\[ PE_{\text{brick}} = m \times g \times h = 2.5 \times 9.8 \times 4 = 98.0 \text{ joules} \][/tex]
Kinetic Energy (KE):
[tex]\[ KE_{\text{brick}} = \frac{1}{2} \times m \times v^2 = \frac{1}{2} \times 2.5 \times 10^2 = 125.0 \text{ joules} \][/tex]
Total energy for the brick:
[tex]\[ \text{Total energy}_{\text{brick}} = PE_{\text{brick}} + KE_{\text{brick}} = 98.0 + 125.0 = 223.0 \text{ joules} \][/tex]
#### 3. The ball
- Mass [tex]\( m = 0.25 \)[/tex] kg
- Velocity [tex]\( v = 10 \)[/tex] meters/second
Kinetic Energy (KE):
[tex]\[ KE_{\text{ball}} = \frac{1}{2} \times m \times v^2 = \frac{1}{2} \times 0.25 \times 10^2 = 12.5 \text{ joules} \][/tex]
Since the ball is rolling on flat ground, it has no potential energy.
### Step 2: Arrange the objects by their total energy
Now that we have calculated the energy for each object, we can sort them:
- Book: [tex]\( 11.025 \)[/tex] joules (all potential energy)
- Ball: [tex]\( 12.5 \)[/tex] joules (all kinetic energy)
- Brick: [tex]\( 223.0 \)[/tex] joules (sum of potential and kinetic energy)
So, the arrangement from least amount of energy to the most is:
1. Book: [tex]\( 11.025 \)[/tex] joules
2. Ball: [tex]\( 12.5 \)[/tex] joules
3. Brick: [tex]\( 223.0 \)[/tex] joules
Therefore, the energy distribution is:
[tex]\[ \begin{array}{c} \boxed{\text{Book}} \\ \boxed{\text{Ball}} \\ \boxed{\text{Brick}} \end{array} \][/tex]