Solve the equation on the interval [tex]$[0, 2\pi)$[/tex].

[tex]\[
7 \csc(x) - 3 = 11
\][/tex]

[tex]\[
x = \frac{\pi}{[?]}, \frac{[]\pi}{[]}
\][/tex]



Answer :

Let's solve the equation [tex]\( 7 \csc(x) - 3 = 11 \)[/tex] on the interval [tex]\([0, 2\pi)\)[/tex].

1. Given equation:
[tex]\[ 7 \csc(x) - 3 = 11 \][/tex]

2. Isolate the cosecant function:
[tex]\[ 7 \csc(x) - 3 = 11 \][/tex]
Add 3 to both sides:
[tex]\[ 7 \csc(x) = 14 \][/tex]
Divide both sides by 7:
[tex]\[ \csc(x) = 2 \][/tex]

3. Express cosecant in terms of sine:
[tex]\[ \csc(x) = \frac{1}{\sin(x)} \][/tex]
Substitute [tex]\(\csc(x)\)[/tex] with [tex]\(\frac{1}{\sin(x)}\)[/tex]:
[tex]\[ \frac{1}{\sin(x)} = 2 \][/tex]
Find the reciprocal to solve for [tex]\(\sin(x)\)[/tex]:
[tex]\[ \sin(x) = \frac{1}{2} \][/tex]

4. Find solutions for [tex]\(\sin(x) = \frac{1}{2}\)[/tex] within the interval [tex]\([0, 2\pi)\)[/tex]:
The sine function equals [tex]\(\frac{1}{2}\)[/tex] at [tex]\( x = \frac{\pi}{6} \)[/tex] and [tex]\( x = \frac{5\pi}{6} \)[/tex].

So, the solutions to the equation on the interval [tex]\([0, 2\pi)\)[/tex] are:
[tex]\[ x = \frac{\pi}{6}, \frac{5\pi}{6} \][/tex]

Therefore, [tex]\(x\)[/tex] is:
[tex]\[ x = \frac{\pi}{6}, \frac{5\pi}{6} \][/tex]