Drag the labels to the correct locations on the table. Not all tiles will be used.

Match each attribute of a parabola to the correct quadratic function.

\begin{tabular}{|l|l|}
\hline
\textbf{Quadratic Function} & \textbf{Attributes} \\
\hline
[tex]$f(x)=-(x-1)^2+4$[/tex] & \\
\hline
[tex]$f(x)=2(x+1)^2+4$[/tex] & \\
\hline
\end{tabular}

Attributes:
- vertex: [tex]$(-1,4)$[/tex]
- vertex: [tex]$(-1,-4)$[/tex]
- vertex: [tex]$(1,4)$[/tex]
- focus: [tex]$\left(-1,3 \frac{3}{4}\right)$[/tex]
- focus: [tex]$\left(1,3 \frac{3}{4}\right)$[/tex]
- focus: [tex]$\left(-1,4 \frac{1}{8}\right)$[/tex]
- directrix: [tex]$y=3 \frac{7}{8}$[/tex]
- directrix: [tex]$y=4 \frac{1}{4}$[/tex]
- directrix: [tex]$y=3 \frac{3}{4}$[/tex]



Answer :

Certainly! Let's match the attributes of each parabola to their corresponding functions.

Given the attributes, we have:

For the function [tex]\( f(x) = -(x-1)^2 + 4 \)[/tex]:
- Vertex: [tex]\((1, 4)\)[/tex]
- Focus: [tex]\(\left(1, 3 \frac{3}{4}\right)\)[/tex]
- Directrix: [tex]\( y = 4 \frac{1}{4} \)[/tex]

For the function [tex]\( f(x) = 2(x+1)^2 + 4 \)[/tex]:
- Vertex: [tex]\((-1, 4)\)[/tex]
- Focus: [tex]\(\left(-1, 4 \frac{1}{8}\right)\)[/tex]
- Directrix: [tex]\( y = 3 \frac{7}{8} \)[/tex]

Let's place these attributes in the table:

[tex]\[ \begin{tabular}{|l|l|} \hline $f(x)=-(x-1)^2+4$ & $f(x)=2(x+1)^2+4$ \\ \hline Vertex: $(1, 4)$ & Vertex: $(-1, 4)$ \\ Focus: $\left(1, 3 \frac{3}{4}\right)$ & Focus: $\left(-1, 4 \frac{1}{8}\right)$ \\ Directrix: $y=4 \frac{1}{4}$ & Directrix: $y=3 \frac{7}{8}$ \\ \hline \end{tabular} \][/tex]

This correctly matches each attribute to the appropriate quadratic function.