Using the formula, compute the true annual interest rate.

[tex]\operatorname{Interest}(I)=\frac{2yc}{m(n+1)}[/tex]

Loan amount: [tex] \$8,500 [/tex]
Monthly payments: [tex] \$170.50 [/tex]
Time of loan contract: 5 years
True annual interest rate (to the nearest tenth): 10.0



Answer :

To solve this problem, we need to compute the interest using the given formula:

[tex]\[ I = \frac{2 \times y \times c}{m \times (n + 1)} \][/tex]

where:

- [tex]\( I \)[/tex] is the interest
- [tex]\( y \)[/tex] is the true annual interest rate
- [tex]\( c \)[/tex] is the loan amount
- [tex]\( m \)[/tex] is the number of monthly payments in a year
- [tex]\( n \)[/tex] is the total number of monthly payments

Given data:
- Loan amount ([tex]\( c \)[/tex]): [tex]$\$[/tex] 8,500[tex]$ - Monthly payments: $[/tex]\[tex]$ 170.50$[/tex]
- Time of loan contract ([tex]\( n \)[/tex]): 5 years
- True annual interest rate ([tex]\( y \)[/tex]): 10.0%

First, calculate the total number of monthly payments:
[tex]\[ m = 12 \][/tex]
[tex]\[ n = \text{time of the loan contract} = 5 \text{ years} \][/tex]
[tex]\[ \text{Total number of monthly payments} = m \times n = 12 \times 5 = 60 \][/tex]

Now, plug these values into the formula to calculate the interest:

[tex]\[ I = \frac{2 \times y \times c}{m \times (n + 1)} \][/tex]

Substituting the known values:
[tex]\[ y = 10.0\% \][/tex]
[tex]\[ c = 8500 \][/tex]
[tex]\[ m = 12 \][/tex]
[tex]\[ n = 60 \][/tex]

[tex]\[ I = \frac{2 \times 10.0 \times 8500}{12 \times (60 + 1)} \][/tex]

Simplify the denominator:
[tex]\[ 12 \times 61 = 732 \][/tex]

Proceed with the numerator:
[tex]\[ 2 \times 10.0 \times 8500 = 170000 \][/tex]

Now, divide the results:
[tex]\[ I = \frac{170000}{732} \approx 232.24043715846994 \][/tex]

Finally, the true annual interest rate, rounded to the nearest tenth, can be expressed as:
[tex]\[ I \approx 232.2 \][/tex]

Hence, the true annual interest rate is calculated as [tex]\( 232.2 \)[/tex].