What is the standard form of [tex]$80,000+4,000+500+90+2$[/tex]?

A. [tex]8 \times 10^4 + 4 \times 10^3 + 5 \times 10^2 + 9 \times 10^1 + 2 \times 10^0[/tex]
B. [tex]2^4 \times 17 \times 311[/tex]
C. 84,592
D. [tex]8.4592 \times 10^4[/tex]



Answer :

Sure! Let's break down the solution step-by-step to find the standard form of the given expression [tex]\( 80,000 + 4,000 + 500 + 90 + 2 \)[/tex].

1. Add the values together:
[tex]\[ 80,000 + 4,000 + 500 + 90 + 2 = 84,592 \][/tex]

Therefore, the sum of the values is [tex]\( 84,592 \)[/tex].

2. Express [tex]\( 84,592 \)[/tex] in standard form:
- The standard form of a number is expressed as [tex]\( a \times 10^n \)[/tex] where [tex]\( 1 \leq a < 10 \)[/tex] and [tex]\( n \)[/tex] is an integer.

- To convert [tex]\( 84,592 \)[/tex] to standard form, we need to place the decimal point after the first digit and count the number of places the decimal point has moved.

[tex]\[ 84,592 = 8.4592 \times 10^4 \][/tex]

Here, [tex]\( a = 8.4592 \)[/tex] and [tex]\( n = 4 \)[/tex].

3. Match with the given options:
[tex]\[ \begin{align*} A & : 8 \times 10^4+4 \times 10^3+5 \times 10^2+9 \times 10^1+2 \times 10^0 \quad \text{(not a standard form)} \\ B & : 2^4 \times 17 \times 311 \quad \text{(not applicable here)} \\ C & : 84,592 \quad \text{(this is the sum, but not in standard form)} \\ D & : 8.4592 \times 10^4 \quad \text{(this matches our standard form)} \end{align*} \][/tex]

Hence, the standard form of [tex]\( 80,000 + 4,000 + 500 + 90 + 2 \)[/tex] is:
[tex]\[ \boxed{8.4592 \times 10^4} \][/tex]
And the correct answer is option [tex]\( D \)[/tex].