Analyzing Functions Represented by Tables

\begin{tabular}{|c|c|}
\hline
[tex]$x$[/tex] & [tex]$f(x)$[/tex] \\
\hline
-3 & 50 \\
\hline
-2 & 0 \\
\hline
-1 & -6 \\
\hline
0 & -4 \\
\hline
1 & -6 \\
\hline
2 & 0 \\
\hline
\end{tabular}

Use the table to complete the statements.

The [tex]$x$[/tex]-intercepts shown in the table are [tex]$\square$[/tex] and [tex]$\square$[/tex].

The [tex]$y$[/tex]-intercept shown in the table is [tex]$\square$[/tex].



Answer :

Let's analyze the given table of values for the function [tex]\( f(x) \)[/tex]:

[tex]\[ \begin{array}{|c|c|} \hline x & f(x) \\ \hline -3 & 50 \\ \hline -2 & 0 \\ \hline -1 & -6 \\ \hline 0 & -4 \\ \hline 1 & -6 \\ \hline 2 & 0 \\ \hline \end{array} \][/tex]

First, we will determine the [tex]\( x \)[/tex]-intercepts. The [tex]\( x \)[/tex]-intercepts occur where the value of [tex]\( f(x) \)[/tex] is zero. By examining the table:

- When [tex]\( x = -2 \)[/tex], [tex]\( f(x) = 0 \)[/tex].
- When [tex]\( x = 2 \)[/tex], [tex]\( f(x) = 0 \)[/tex].

Therefore, the [tex]\( x \)[/tex]-intercepts shown in the table are [tex]\(-2\)[/tex] and [tex]\(2\)[/tex].

Next, we will determine the [tex]\( y \)[/tex]-intercept. The [tex]\( y \)[/tex]-intercept occurs where the value of [tex]\( x \)[/tex] is zero. By examining the table:

- When [tex]\( x = 0 \)[/tex], [tex]\( f(x) = -4 \)[/tex].

Therefore, the [tex]\( y \)[/tex]-intercept shown in the table is [tex]\(-4\)[/tex].

In conclusion:
- The [tex]\( x \)[/tex]-intercepts shown in the table are [tex]\(-2\)[/tex] and [tex]\(2\)[/tex].
- The [tex]\( y \)[/tex]-intercept shown in the table is [tex]\(-4\)[/tex].

So, we can complete the statements as follows:
- The [tex]\( x \)[/tex]-intercepts shown in the table are [tex]\(-2\)[/tex] and [tex]\(2\)[/tex].
- The [tex]\( y \)[/tex]-intercept shown in the table is [tex]\(-4\)[/tex].