Answered

At sea level, where [tex]$g = 9.800 \, m/s^{2}$[/tex], a pendulum has a period of 1.000 s. When you take it to the top of a mountain, its period is 0.9990 s. What is [tex]g[/tex] at the top of the mountain? (Keep 4 significant figures.)

(Unit: [tex]m/s^{2}[/tex])



Answer :

Sure, let's work through this problem step-by-step:

1. Recalling the formula for the period of a pendulum:

The period [tex]\( T \)[/tex] of a pendulum is given by the formula:

[tex]\[ T = 2 \pi \sqrt{\frac{L}{g}} \][/tex]

where:
- [tex]\( T \)[/tex] is the period of the pendulum.
- [tex]\( L \)[/tex] is the length of the pendulum.
- [tex]\( g \)[/tex] is the acceleration due to gravity.

2. Given Values:

- At sea level:
[tex]\[ g_{\text{sea}} = 9.800 \, \text{m/s}^2 \][/tex]
[tex]\[ T_{\text{sea}} = 1.000 \, \text{s} \][/tex]

- At the top of the mountain:
[tex]\[ T_{\text{mountain}} = 0.9990 \, \text{s} \][/tex]

3. Establishing the Ratio:

Since the length [tex]\( L \)[/tex] of the pendulum is constant, we can establish the following ratio:

[tex]\[ \left( \frac{T_{\text{mountain}}}{T_{\text{sea}}} \right)^2 = \frac{g_{\text{sea}}}{g_{\text{mountain}}} \][/tex]

4. Calculating the Ratio:

Substitute the given periods into the ratio:

[tex]\[ \left( \frac{0.9990 \, \text{s}}{1.000 \, \text{s}} \right)^2 = \left(0.9990\right)^2 = 0.998001 \][/tex]

5. Solving for [tex]\( g_{\text{mountain}} \)[/tex]:

Rearrange the equation to solve for [tex]\( g_{\text{mountain}} \)[/tex]:

[tex]\[ g_{\text{mountain}} = \frac{g_{\text{sea}}}{\text{ratio}} \][/tex]

Substitute the values:

[tex]\[ g_{\text{mountain}} = \frac{9.800 \, \text{m/s}^2}{0.998001} \][/tex]

[tex]\[ g_{\text{mountain}} = 9.81962943924906 \, \text{m/s}^2 \][/tex]

6. Rounding to Significant Figures:

We are asked to keep 4 significant figures, so the result is:

[tex]\[ g_{\text{mountain}} = 9.820 \, \text{m/s}^2 \][/tex]

So, the acceleration due to gravity at the top of the mountain is [tex]\( 9.820 \, \text{m/s}^2 \)[/tex].