Select the correct answer.

What are the solutions of this quadratic equation?
[tex]\[4x^2 + 3 = 4x + 2\][/tex]

A. [tex]\(x = \frac{1}{2}\)[/tex]
B. [tex]\(x = -2 \pm \sqrt{3}\)[/tex]
C. [tex]\(x = 2\)[/tex]
D. [tex]\(x = \frac{1 \pm \sqrt{3}}{2}\)[/tex]



Answer :

To solve the quadratic equation [tex]\(4x^2 + 3 = 4x + 2\)[/tex], we first need to rearrange it into a standard form of a quadratic equation, which is [tex]\(ax^2 + bx + c = 0\)[/tex].

Step-by-step solution:

1. Start with the original equation:
[tex]\[ 4x^2 + 3 = 4x + 2 \][/tex]

2. Move all terms to one side of the equation to set it to zero:
[tex]\[ 4x^2 + 3 - 4x - 2 = 0 \][/tex]

3. Simplify the equation by combining like terms:
[tex]\[ 4x^2 - 4x + 1 = 0 \][/tex]

Now we need to solve this standard form quadratic equation [tex]\(4x^2 - 4x + 1 = 0\)[/tex]. A standard approach for solving a quadratic equation is by using the quadratic formula:
[tex]\[ x = \frac{{-b \pm \sqrt{{b^2 - 4ac}}}}{2a} \][/tex]

For our quadratic equation [tex]\(4x^2 - 4x + 1 = 0\)[/tex], we identify [tex]\(a = 4\)[/tex], [tex]\(b = -4\)[/tex], and [tex]\(c = 1\)[/tex]. Plugging these values into the quadratic formula, we get:

[tex]\[ x = \frac{-(-4) \pm \sqrt{(-4)^2 - 4 \cdot 4 \cdot 1}}{2 \cdot 4} \][/tex]

Simplify inside the square root and the rest of the formula:

[tex]\[ x = \frac{4 \pm \sqrt{16 - 16}}{8} \][/tex]

[tex]\[ x = \frac{4 \pm \sqrt{0}}{8} \][/tex]

[tex]\[ x = \frac{4 \pm 0}{8} \][/tex]

[tex]\[ x = \frac{4}{8} \][/tex]

[tex]\[ x = \frac{1}{2} \][/tex]

Thus, the only solution to the quadratic equation [tex]\(4x^2 + 3 = 4x + 2\)[/tex] is:

[tex]\[ \boxed{x = \frac{1}{2}} \][/tex]

So, the correct answer is:

A. [tex]\(x = \frac{1}{2}\)[/tex]