If [tex]4x + \frac{1}{2}y = 3[/tex], what is [tex]y[/tex] in terms of [tex]x[/tex]?

A. [tex]y = (4x + 3) \times 2[/tex]

B. [tex]y = 2(-4x + 3)[/tex]

C. [tex]y = (-4x + 3) \div 2[/tex]

D. [tex]y = 8x - 6[/tex]



Answer :

To solve for [tex]\( y \)[/tex] in terms of [tex]\( x \)[/tex] given the equation [tex]\( 4x + \frac{1}{2}y = 3 \)[/tex], follow these steps:

1. Start with the given equation:
[tex]\[ 4x + \frac{1}{2}y = 3 \][/tex]

2. Isolate the term with [tex]\( y \)[/tex] on one side of the equation. Subtract [tex]\( 4x \)[/tex] from both sides:
[tex]\[ \frac{1}{2}y = 3 - 4x \][/tex]

3. Solve for [tex]\( y \)[/tex] by multiplying both sides of the equation by 2 to get rid of the fraction:
[tex]\[ y = 2(3 - 4x) \][/tex]

4. Simplify the expression:
[tex]\[ y = 6 - 8x \][/tex]

Now that we have [tex]\( y = 6 - 8x \)[/tex], we can compare this result to the given options:

- Option A: [tex]\( y = (4x + 3) \times 2 \)[/tex]
[tex]\[ y = 2(4x + 3) = 8x + 6 \][/tex]
This does not match [tex]\( y = 6 - 8x \)[/tex].

- Option B: [tex]\( y = 2(-4x + 3) \)[/tex]
[tex]\[ y = 2(-4x + 3) = -8x + 6 \][/tex]
This also does not match [tex]\( y = 6 - 8x \)[/tex].

- Option C: [tex]\( y = (-4x + 3) \div 2 \)[/tex]
[tex]\[ y = \frac{-4x + 3}{2} = -2x + 1.5 \][/tex]
This does not match [tex]\( y = 6 - 8x \)[/tex] either.

- Option D: [tex]\( y = 8x - 6 \)[/tex]

This does not match [tex]\( y = 6 - 8x \)[/tex] either.

None of the options directly matches [tex]\( y = 6 - 8x \)[/tex], hence there seems to be no correct option provided in the choices.