Use a graphing calculator to approximate the area between the graphs of [tex] y = \ln x [/tex] and [tex] y = 7xe^x [/tex] on the interval [1,2].

The area is ☐ (Round to the nearest hundredth as needed.)



Answer :

To approximate the area between the graphs of [tex]\( y = \ln(x) \)[/tex] and [tex]\( y = 7x e^x \)[/tex] over the interval [tex]\([1, 2]\)[/tex], follow these steps:

1. Understand the functions and the interval:
- The first function is [tex]\( y = \ln(x) \)[/tex].
- The second function is [tex]\( y = 7x e^x \)[/tex].
- The interval over which we are calculating the area is [tex]\([1, 2]\)[/tex].

2. Calculate the definite integrals of each function over the interval [tex]\([1, 2]\)[/tex]:
- The integral of [tex]\( y = \ln(x) \)[/tex] over [tex]\([1, 2]\)[/tex].
- The integral of [tex]\( y = 7x e^x \)[/tex] over [tex]\([1, 2]\)[/tex].

3. Definite integral of [tex]\( y = \ln(x) \)[/tex] over [tex]\([1, 2]\)[/tex]:
[tex]\[ \int_{1}^{2} \ln(x) \, dx \approx 0.3863 \][/tex]

4. Definite integral of [tex]\( y = 7x e^x \)[/tex] over [tex]\([1, 2]\)[/tex]:
[tex]\[ \int_{1}^{2} 7x e^x \, dx \approx 51.7234 \][/tex]

5. Find the absolute difference between the two areas:
[tex]\[ \left| 51.7234 - 0.3863 \right| = 51.3371 \][/tex]

6. Round the result to the nearest hundredth:
[tex]\[ 51.34 \][/tex]

Therefore, the approximate area between the graphs of [tex]\( y = \ln(x) \)[/tex] and [tex]\( y = 7x e^x \)[/tex] over the interval [tex]\([1, 2]\)[/tex] is [tex]\( \boxed{51.34} \)[/tex].