The given mathematical expression appears to be nonsensical as written. It seems to be a combination of incomplete or incorrect LaTeX formatting and disorganized terms. Here is a possible corrected version assuming some intended algebraic expression:

[tex]\[ \hat{s} \cdot \left( -\frac{3}{7} x + \frac{18}{3s} \right) = 1 - 6 \cdot x \][/tex]

If the original question is intended to solve for [tex]\( x \)[/tex], then you can add a prompt for clarity:

Solve for [tex]\( x \)[/tex]:

[tex]\[ \hat{s} \cdot \left( -\frac{3}{7} x + \frac{18}{3s} \right) = 1 - 6 \cdot x \][/tex]

Please ensure that [tex]\( \hat{s} \)[/tex] and other symbols are used correctly as per the context of your problem. If there is specific meaning to these symbols (like a unit vector or a variable), they should be clearly defined in the context.



Answer :

Sure, let's solve the given equation step-by-step.

The given equation is:

[tex]\[ \left(-\frac{3}{7} x + \frac{18}{3s}\right) = 1 - 6x \][/tex]

First, let's isolate the variable [tex]\( x \)[/tex].

Step 1: Expand and combine like terms.
- To remove fractions, it's sometimes helpful to multiply through by the least common denominator. In this case, we'll work step-by-step through simple operations to maintain clarity.
- Multiply the terms involving [tex]\( x \)[/tex]:
[tex]\[ -\frac{3}{7} x + \frac{18}{3s} = 1 - 6x \][/tex]

Step 2: Get all terms involving [tex]\( x \)[/tex] on one side of the equation and constants on the other.

Add [tex]\( 6x \)[/tex] to both sides:
[tex]\[ -\frac{3}{7} x + 6x + \frac{18}{3s} = 1 \][/tex]

Step 3: Combine terms involving [tex]\( x \)[/tex]:
[tex]\[ \left(-\frac{3}{7} + 6\right)x + \frac{18}{3s} = 1 \][/tex]

Simplify the coefficients of [tex]\( x \)[/tex]:
[tex]\[ \left(6 - \frac{3}{7}\right)x + \frac{18}{3s} = 1 \][/tex]

Convert [tex]\(6\)[/tex] to a fraction with a denominator of [tex]\(7\)[/tex]:
[tex]\[ \left(\frac{42}{7} - \frac{3}{7}\right)x + \frac{18}{3s} = 1 \][/tex]

Combine the fractions:
[tex]\[ \frac{39}{7}x + \frac{18}{3s} = 1 \][/tex]

Step 4: Isolate [tex]\( x \)[/tex]:
Subtract [tex]\(\frac{18}{3s}\)[/tex] from both sides:
[tex]\[ \frac{39}{7}x = 1 - \frac{18}{3s} \][/tex]

Step 5: Solve for [tex]\( x \)[/tex]:
Multiply both sides by [tex]\(\frac{7}{39}\)[/tex]:
[tex]\[ x = \frac{7}{39} \left(1 - \frac{18}{3s}\right) \][/tex]

Simplify the right side:
[tex]\[ x = \frac{7}{39} \left(\frac{3s - 18}{3s}\right) \][/tex]

Step 6: Distribute [tex]\(\frac{7}{39}\)[/tex] across the fraction:
Simplify the fraction inside:
[tex]\[ x = \frac{7}{39} \cdot \frac{3(s - 6)}{3s} \][/tex]

This simplifies to:
[tex]\[ x = \frac{7}{39} \cdot \frac{s - 6}{s} \][/tex]

Combine the constants:
[tex]\[ x = \frac{7}{39} \cdot \frac{s - 6}{s} = \frac{7(s - 6)}{39s} \][/tex]

Finally, simplify further:
[tex]\[ x = \frac{7}{39s} (s - 6) \][/tex]

Combining the fractions gives us:
[tex]\[ x = \frac{7(s - 6)}{39s} = \frac{1}{5.57} \cdot \frac{s - 6}{s} \][/tex]

So, [tex]\( x \)[/tex] can be computed as:
[tex]\[ x = 0.179487179487179 \cdot \frac{s - 6}{s} \][/tex]

Therefore, the solution to the equation is:

[tex]\[ x = 0.179487179487179 \cdot \frac{s - 6}{s} \][/tex]

This provides a detailed step-by-step solution to the given equation.