Sure! Let's solve the equation [tex]\( 6x + 6y = 24 \)[/tex] for [tex]\( y \)[/tex] in terms of [tex]\( x \)[/tex].
Here are the steps:
1. Start with the given equation:
[tex]\[
6x + 6y = 24
\][/tex]
2. To isolate [tex]\( y \)[/tex], subtract [tex]\( 6x \)[/tex] from both sides of the equation:
[tex]\[
6y = 24 - 6x
\][/tex]
3. Next, divide both sides of the equation by [tex]\( 6 \)[/tex] to solve for [tex]\( y \)[/tex]:
[tex]\[
y = \frac{24 - 6x}{6}
\][/tex]
4. Simplify the fraction by dividing both terms in the numerator by [tex]\( 6 \)[/tex]:
[tex]\[
y = \frac{24}{6} - \frac{6x}{6}
\][/tex]
[tex]\[
y = 4 - x
\][/tex]
So, the solution to the equation [tex]\( 6x + 6y = 24 \)[/tex] solved for [tex]\( y \)[/tex] in terms of [tex]\( x \)[/tex] is [tex]\( y = 4 - x \)[/tex].
Therefore, the correct answer is:
C. [tex]\( y = -x + 4 \)[/tex]