To solve the equation [tex]\(12x + 4y = 20\)[/tex] for [tex]\(y\)[/tex], follow these steps:
1. Isolate the [tex]\(4y\)[/tex] term:
Move the term involving [tex]\(x\)[/tex] to the other side by subtracting [tex]\(12x\)[/tex] from both sides of the equation:
[tex]\[
12x + 4y - 12x = 20 - 12x
\][/tex]
Simplify this to:
[tex]\[
4y = -12x + 20
\][/tex]
2. Solve for [tex]\(y\)[/tex]:
Divide both sides of the equation by 4 to isolate [tex]\(y\)[/tex]:
[tex]\[
\frac{4y}{4} = \frac{-12x + 20}{4}
\][/tex]
Simplify the right side:
[tex]\[
y = -3x + 5
\][/tex]
Hence, the solution to the equation [tex]\(12x + 4y = 20\)[/tex] for [tex]\(y\)[/tex] is:
[tex]\[
\boxed{y = -3x + 5}
\][/tex]
Thus, the correct choice is:
- B. [tex]\(y = -3x + 5\)[/tex].