Answer :
To solve the equation [tex]\(12x + 4y = 20\)[/tex] for [tex]\(y\)[/tex], follow these steps:
1. Isolate the [tex]\(4y\)[/tex] term:
Move the term involving [tex]\(x\)[/tex] to the other side by subtracting [tex]\(12x\)[/tex] from both sides of the equation:
[tex]\[ 12x + 4y - 12x = 20 - 12x \][/tex]
Simplify this to:
[tex]\[ 4y = -12x + 20 \][/tex]
2. Solve for [tex]\(y\)[/tex]:
Divide both sides of the equation by 4 to isolate [tex]\(y\)[/tex]:
[tex]\[ \frac{4y}{4} = \frac{-12x + 20}{4} \][/tex]
Simplify the right side:
[tex]\[ y = -3x + 5 \][/tex]
Hence, the solution to the equation [tex]\(12x + 4y = 20\)[/tex] for [tex]\(y\)[/tex] is:
[tex]\[ \boxed{y = -3x + 5} \][/tex]
Thus, the correct choice is:
- B. [tex]\(y = -3x + 5\)[/tex].
1. Isolate the [tex]\(4y\)[/tex] term:
Move the term involving [tex]\(x\)[/tex] to the other side by subtracting [tex]\(12x\)[/tex] from both sides of the equation:
[tex]\[ 12x + 4y - 12x = 20 - 12x \][/tex]
Simplify this to:
[tex]\[ 4y = -12x + 20 \][/tex]
2. Solve for [tex]\(y\)[/tex]:
Divide both sides of the equation by 4 to isolate [tex]\(y\)[/tex]:
[tex]\[ \frac{4y}{4} = \frac{-12x + 20}{4} \][/tex]
Simplify the right side:
[tex]\[ y = -3x + 5 \][/tex]
Hence, the solution to the equation [tex]\(12x + 4y = 20\)[/tex] for [tex]\(y\)[/tex] is:
[tex]\[ \boxed{y = -3x + 5} \][/tex]
Thus, the correct choice is:
- B. [tex]\(y = -3x + 5\)[/tex].