Sure, let's solve the equation [tex]\(3x + 5y = 16\)[/tex] for [tex]\(y\)[/tex].
1. Isolate the term containing [tex]\(y\)[/tex]:
[tex]\[ 3x + 5y = 16 \][/tex]
Subtract [tex]\(3x\)[/tex] from both sides:
[tex]\[ 5y = 16 - 3x \][/tex]
2. Solve for [tex]\(y\)[/tex]:
Divide both sides by 5:
[tex]\[ y = \frac{16 - 3x}{5} \][/tex]
3. Simplify the expression:
[tex]\[ y = \frac{16}{5} - \frac{3x}{5} \][/tex]
This matches the form given in option D.
Hence, the correct choice is:
[tex]\[ \boxed{D} \][/tex]