Solve the equation [tex]$3x + 5y = 16$[/tex] for [tex]y[/tex].

A. [tex]$y = \frac{3x}{5} - \frac{16}{5}$[/tex]
B. [tex][tex]$y = 5(16 - 3x)$[/tex][/tex]
C. [tex]$y = 16 - 3x$[/tex]
D. [tex]$y = \frac{16}{5} - \frac{3x}{5}$[/tex]



Answer :

Sure, let's solve the equation [tex]\(3x + 5y = 16\)[/tex] for [tex]\(y\)[/tex].

1. Isolate the term containing [tex]\(y\)[/tex]:
[tex]\[ 3x + 5y = 16 \][/tex]
Subtract [tex]\(3x\)[/tex] from both sides:
[tex]\[ 5y = 16 - 3x \][/tex]

2. Solve for [tex]\(y\)[/tex]:
Divide both sides by 5:
[tex]\[ y = \frac{16 - 3x}{5} \][/tex]

3. Simplify the expression:
[tex]\[ y = \frac{16}{5} - \frac{3x}{5} \][/tex]

This matches the form given in option D.

Hence, the correct choice is:
[tex]\[ \boxed{D} \][/tex]