Use the completing the square method to write [tex]$y=-0.6x^2+1$[/tex] in vertex form [tex]\left(y=a(x-h)^2+k\right)[/tex]. Record [tex]a[/tex], [tex]h[/tex], and [tex]k[/tex] below.

[tex]a=[/tex] [tex]\square[/tex]

[tex]h=[/tex] [tex]\square[/tex]

[tex]k=[/tex] [tex]\square[/tex]



Answer :

To express the quadratic equation [tex]\( y = -0.6x^2 + 1 \)[/tex] in vertex form, which is represented as [tex]\( y = a(x - h)^2 + k \)[/tex], we need to complete the square. Here’s the step-by-step process:

1. Identify the coefficients: The given equation is [tex]\( y = -0.6x^2 + 1 \)[/tex], so:
[tex]\[ a = -0.6, \quad b = 0, \quad c = 1 \][/tex]

2. Determine [tex]\( h \)[/tex]: For a quadratic equation [tex]\( y = ax^2 + bx + c \)[/tex], the value of [tex]\( h \)[/tex] can be found using the formula:
[tex]\[ h = -\frac{b}{2a} \][/tex]
Since [tex]\( b = 0 \)[/tex]:
[tex]\[ h = -\frac{0}{2(-0.6)} = 0 \][/tex]

3. Determine [tex]\( k \)[/tex]: To find [tex]\( k \)[/tex], use the formula:
[tex]\[ k = c - \frac{b^2}{4a} \][/tex]
Given [tex]\( b = 0 \)[/tex]:
[tex]\[ k = 1 - \frac{0^2}{4(-0.6)} = 1 \][/tex]

4. Assemble the vertex form: Substitute [tex]\( a \)[/tex], [tex]\( h \)[/tex], and [tex]\( k \)[/tex] into the vertex form equation:
[tex]\[ y = -0.6(x - 0)^2 + 1 \][/tex]
This simplifies to:
[tex]\[ y = -0.6(x - 0)^2 + 1 \][/tex]

Therefore, the values are:

[tex]\[ a = -0.6 \][/tex]
[tex]\[ h = 0 \][/tex]
[tex]\[ k = 1 \][/tex]

So, in vertex form, the equation is [tex]\( y = -0.6(x - 0)^2 + 1 \)[/tex], and the parameters are:

[tex]\[ a = -0.6, \quad h = 0, \quad k = 1 \][/tex]