What is the range of the function [tex]$y=\sqrt{x+5}$[/tex]?

A. [tex]y \geq -5[/tex]
B. [tex]y \geq 0[/tex]
C. [tex]y \geq \sqrt{5}[/tex]
D. [tex]y \geq 5[/tex]



Answer :

To determine the range of the function [tex]\( y = \sqrt{x+5} \)[/tex], let's analyze its behavior step-by-step.

1. Identify the Domain of the Function:
The function [tex]\( y = \sqrt{x+5} \)[/tex] involves a square root. The expression inside the square root, [tex]\( x+5 \)[/tex], must be non-negative because the square root of a negative number is not a real number.

Thus, we have:
[tex]\[ x + 5 \geq 0 \][/tex]
Simplifying this inequality, we get:
[tex]\[ x \geq -5 \][/tex]
So, the domain of the function is [tex]\( x \geq -5 \)[/tex].

2. Evaluate the Minimum Value of the Function:
Next, we need to determine the minimum value of [tex]\( y \)[/tex].
[tex]\[ y = \sqrt{x+5} \][/tex]
The minimum value of the expression [tex]\( x + 5 \)[/tex] occurs when [tex]\( x \)[/tex] is at its smallest within the domain. This happens when [tex]\( x = -5 \)[/tex]:

[tex]\[ y = \sqrt{-5 + 5} = \sqrt{0} = 0 \][/tex]

Thus, the minimum value of [tex]\( y \)[/tex] is 0.

3. Determine the Range of the Function:
Since the square root function produces only non-negative numbers and we identified that the smallest value of [tex]\( y \)[/tex] is 0, the range of the function is all values [tex]\( y \)[/tex] where [tex]\( y \geq 0 \)[/tex].

Therefore, the correct answer is:
[tex]\[ \boxed{y \geq 0} \][/tex]