LMNO is a parallelogram, with [tex]\angle M = (11x)^{\circ}[/tex] and [tex]\angle N = (6x - 7)^{\circ}[/tex]. Which statements are true about parallelogram LMNO? Select three options.

A. [tex]x = 11[/tex]
B. [tex]m \angle L = 22^{\circ}[/tex]
C. [tex]m \angle M = 111^{\circ}[/tex]
D. [tex]m \angle N = 59^{\circ}[/tex]
E. [tex]m \angle O = 121^{\circ}[/tex]



Answer :

Let's start by understanding the properties of a parallelogram, particularly the relationships between its angles. In a parallelogram, opposite angles are equal, and adjacent angles are supplementary (adding up to 180°). Given:

- [tex]\(\angle M = 11x\)[/tex] degrees
- [tex]\(\angle N = 6x - 7\)[/tex] degrees

We need to find the value of [tex]\( x \)[/tex] that satisfies the conditions of the parallelogram.

Since [tex]\(\angle M\)[/tex] and [tex]\(\angle N\)[/tex] are adjacent angles, they must be supplementary. Hence, we can set up the following equation:

[tex]\[ 11x + (6x - 7) = 180 \][/tex]

Let's solve this equation for [tex]\( x \)[/tex]:

[tex]\[ 11x + 6x - 7 = 180 \][/tex]
[tex]\[ 17x - 7 = 180 \][/tex]
[tex]\[ 17x = 187 \][/tex]
[tex]\[ x = 11 \][/tex]

Now, using [tex]\( x = 11 \)[/tex], we can find the measures of the specified angles:

1. [tex]\(\angle M = 11x = 11 \times 11 = 121^\circ\)[/tex]
2. [tex]\(\angle N = 6x - 7 = 6 \times 11 - 7 = 66 - 7 = 59^\circ\)[/tex]

Since LMNO is a parallelogram, [tex]\(\angle L = \angle N\)[/tex] and [tex]\(\angle O = \angle M\)[/tex]:

3. [tex]\(\angle L = \angle N = 59^\circ\)[/tex]
4. [tex]\(\angle O = \angle M = 121^\circ\)[/tex]

Given these results, let's analyze the statements provided:

1. [tex]\( x = 11 \)[/tex]: This statement is true.
2. [tex]\( m\angle L = 22^\circ \)[/tex]: This statement is false because [tex]\(\angle L = 59^\circ\)[/tex].
3. [tex]\( m\angle M = 111^\circ \)[/tex]: This statement is false because [tex]\(\angle M = 121^\circ\)[/tex].
4. [tex]\( m\angle N = 59^\circ \)[/tex]: This statement is true.
5. [tex]\( m\angle O = 121^\circ \)[/tex]: This statement is true.

In conclusion, the three true statements about parallelogram LMNO are:

- [tex]\( x = 11 \)[/tex]
- [tex]\( m\angle N = 59^\circ \)[/tex]
- [tex]\( m\angle O = 121^\circ \)[/tex]