What is the domain of the function [tex]$y=\sqrt{x}$[/tex]?

A. [tex]-\infty \ \textless \ x \ \textless \ \infty[/tex]
B. [tex]0 \ \textless \ x \ \textless \ \infty[/tex]
C. [tex]0 \leq x \ \textless \ \infty[/tex]
D. [tex]1 \leq x \ \textless \ \infty[/tex]



Answer :

To determine the domain of the function [tex]\( y = \sqrt{x} \)[/tex], we need to identify the values of [tex]\( x \)[/tex] for which the function is defined. A square root function is defined only when the expression inside the square root is non-negative because the square root of a negative number is not a real number.

The expression inside the square root in this case is [tex]\( x \)[/tex]. Therefore, the requirement for the function [tex]\( y = \sqrt{x} \)[/tex] to be defined is:
[tex]\[ x \geq 0. \][/tex]

This means that [tex]\( x \)[/tex] can be any non-negative number, including zero.

Expressing this in interval notation, the domain of [tex]\( y = \sqrt{x} \)[/tex] is:
[tex]\[ 0 \leq x < \infty. \][/tex]

Among the given options, this domain corresponds to:
[tex]\[ 0 \leq x < \infty. \][/tex]

So, the correct answer is:
[tex]\[ 0 \leq x < \infty. \][/tex]