Type the correct answer in the box.

What trigonometric expression can be used to find the value of [tex]$x$[/tex]? Replace [tex]$a$[/tex] and [tex]$b$[/tex] with the correct values.

[tex]\[
\sin(a) = \cos(b)
\][/tex]



Answer :

To find the value of [tex]\( x \)[/tex] in a trigonometric expression, we can use the inverse sine function, also known as arcsine. The expression involves solving for [tex]\( x \)[/tex] in the equation [tex]\( \sin(x) = a \)[/tex].

Given that [tex]\( a = 0.5 \)[/tex], we know that [tex]\( \sin(x) = 0.5 \)[/tex].

To find [tex]\( x \)[/tex], we apply the inverse sine function:
[tex]\[ x = \sin^{-1}(0.5) \][/tex]

By evaluating this, we get:
[tex]\[ x = 0.5235987755982989 \][/tex]

So, the correct trigonometric expression to find the value of [tex]\( x \)[/tex] is:
[tex]\[ x = \sin^{-1}(0.5) \][/tex]

Therefore, replacing the variables in the given formula, we get:
[tex]\[ x = \sin^{-1}(0.5) \][/tex]