Answer :
Certainly! Let's tackle this problem step-by-step.
### Part (a)
We are given:
- Initial population, [tex]\( P_0 = 120 \)[/tex]
- Population after 7 days, [tex]\( P(7) = 228 \)[/tex]
The population grows according to a continuous exponential growth model. The general formula for continuous exponential growth is:
[tex]\[ y = P_0 \cdot e^{kt} \][/tex]
Where:
- [tex]\( y \)[/tex] is the population at time [tex]\( t \)[/tex]
- [tex]\( P_0 \)[/tex] is the initial population
- [tex]\( k \)[/tex] is the growth rate constant
- [tex]\( e \)[/tex] is the base of the natural logarithm
- [tex]\( t \)[/tex] is the time in days
We need to find [tex]\( k \)[/tex]. We can use the data provided for [tex]\( t = 7 \)[/tex] days:
[tex]\[ 228 = 120 \cdot e^{7k} \][/tex]
Solving for [tex]\( k \)[/tex]:
1. Divide both sides by 120:
[tex]\[ \frac{228}{120} = e^{7k} \][/tex]
[tex]\[ 1.9 = e^{7k} \][/tex]
2. Take the natural logarithm on both sides to solve for [tex]\( k \)[/tex]:
[tex]\[ \ln(1.9) = 7k \][/tex]
[tex]\[ k = \frac{\ln(1.9)}{7} \][/tex]
### The formula relating [tex]\( y \)[/tex] to [tex]\( t \)[/tex]:
[tex]\[ y = 120 \cdot e^{\left(\frac{\ln(1.9)}{7}\right) t} \][/tex]
This is the exact formula for the population growth.
### Part (b)
We need to find the population after 19 days. Using the formula we derived:
[tex]\[ y = 120 \cdot e^{\left(\frac{\ln(1.9)}{7}\right) \cdot 19} \][/tex]
Substituting [tex]\( t = 19 \)[/tex]:
1. Calculate the exponent:
[tex]\[ \left(\frac{\ln(1.9)}{7}\right) \cdot 19 \approx 0.0916934123103421 \times 19 \approx 1.7421748338964999 \][/tex]
2. Calculate the final population:
[tex]\[ y = 120 \cdot e^{1.7421748338964999} \approx 120 \cdot 5.708333333333432 \approx 685 \][/tex]
Therefore, the population after 19 days is approximately 685 bacteria.
### Final Answers
1. Formula relating [tex]\( y \)[/tex] to [tex]\( t \)[/tex]:
[tex]\[ y = 120 \cdot e^{\left(\frac{\ln(1.9)}{7}\right) t} \][/tex]
2. The number of bacteria 19 days after the beginning of the study:
[tex]\[ \approx 685 \][/tex] bacteria.
### Part (a)
We are given:
- Initial population, [tex]\( P_0 = 120 \)[/tex]
- Population after 7 days, [tex]\( P(7) = 228 \)[/tex]
The population grows according to a continuous exponential growth model. The general formula for continuous exponential growth is:
[tex]\[ y = P_0 \cdot e^{kt} \][/tex]
Where:
- [tex]\( y \)[/tex] is the population at time [tex]\( t \)[/tex]
- [tex]\( P_0 \)[/tex] is the initial population
- [tex]\( k \)[/tex] is the growth rate constant
- [tex]\( e \)[/tex] is the base of the natural logarithm
- [tex]\( t \)[/tex] is the time in days
We need to find [tex]\( k \)[/tex]. We can use the data provided for [tex]\( t = 7 \)[/tex] days:
[tex]\[ 228 = 120 \cdot e^{7k} \][/tex]
Solving for [tex]\( k \)[/tex]:
1. Divide both sides by 120:
[tex]\[ \frac{228}{120} = e^{7k} \][/tex]
[tex]\[ 1.9 = e^{7k} \][/tex]
2. Take the natural logarithm on both sides to solve for [tex]\( k \)[/tex]:
[tex]\[ \ln(1.9) = 7k \][/tex]
[tex]\[ k = \frac{\ln(1.9)}{7} \][/tex]
### The formula relating [tex]\( y \)[/tex] to [tex]\( t \)[/tex]:
[tex]\[ y = 120 \cdot e^{\left(\frac{\ln(1.9)}{7}\right) t} \][/tex]
This is the exact formula for the population growth.
### Part (b)
We need to find the population after 19 days. Using the formula we derived:
[tex]\[ y = 120 \cdot e^{\left(\frac{\ln(1.9)}{7}\right) \cdot 19} \][/tex]
Substituting [tex]\( t = 19 \)[/tex]:
1. Calculate the exponent:
[tex]\[ \left(\frac{\ln(1.9)}{7}\right) \cdot 19 \approx 0.0916934123103421 \times 19 \approx 1.7421748338964999 \][/tex]
2. Calculate the final population:
[tex]\[ y = 120 \cdot e^{1.7421748338964999} \approx 120 \cdot 5.708333333333432 \approx 685 \][/tex]
Therefore, the population after 19 days is approximately 685 bacteria.
### Final Answers
1. Formula relating [tex]\( y \)[/tex] to [tex]\( t \)[/tex]:
[tex]\[ y = 120 \cdot e^{\left(\frac{\ln(1.9)}{7}\right) t} \][/tex]
2. The number of bacteria 19 days after the beginning of the study:
[tex]\[ \approx 685 \][/tex] bacteria.