An electric company calculates a person's monthly bill from the number of kilowatt-hours (kWh), [tex]x[/tex], used.

The function [tex]b(x) = \left\{\begin{array}{cl} 0.10x, & x \leq 200 \\ 0.15(x - 200) + 20, & x \ \textgreater \ 200 \end{array}\right.[/tex] determines the bill.

How much is the bill for a person who uses 600 kWh in a month?

A. [tex]\$80[/tex]
B. [tex]\$60[/tex]
C. [tex]\$70[/tex]
D. [tex]\$40[/tex]



Answer :

To find the monthly bill for a person who uses 600 kWh, we'll use the piecewise function given:

[tex]\[ b(x)=\begin{cases} 0.10 x & \text{if } x \leq 200 \\ 0.15(x-200) + 20 & \text{if } x > 200 \end{cases} \][/tex]

First, we need to determine which part of the piecewise function to use. Since the person used 600 kWh, we see that [tex]\( 600 > 200 \)[/tex]. Hence, we will use the second part of the piecewise function:

[tex]\[ b(x) = 0.15(x-200) + 20 \][/tex]

Now, substitute [tex]\( x = 600 \)[/tex] into the function:

[tex]\[ b(600) = 0.15(600 - 200) + 20 \][/tex]

Simplify inside the parentheses:

[tex]\[ b(600) = 0.15(400) + 20 \][/tex]

Next, calculate [tex]\( 0.15 \times 400 \)[/tex]:

[tex]\[ 0.15 \times 400 = 60 \][/tex]

Now add 20 to the result:

[tex]\[ b(600) = 60 + 20 = 80 \][/tex]

Therefore, the bill for a person who uses 600 kWh in a month is [tex]\(\$ 80\)[/tex].

So, the correct answer is:
A. \$ 80