Use substitution to solve the system.

[tex]\[
\begin{aligned}
-4x + 3y & = 3 \\
y & = 3x - 4
\end{aligned}
\][/tex]

[tex]\[
\begin{array}{l}
x = \\
y =
\end{array}
\][/tex]



Answer :

Sure, let's solve the given system of equations using substitution. We have:

1. [tex]\( -4x + 3y = 3 \)[/tex]
2. [tex]\( y = 3x - 4 \)[/tex]

Here are the step-by-step instructions:

1. Substitute [tex]\( y \)[/tex] from the second equation into the first equation:

From the second equation, we already have: [tex]\( y = 3x - 4 \)[/tex]

Substitute this expression for [tex]\( y \)[/tex] into the first equation:

[tex]\[ -4x + 3(3x - 4) = 3 \][/tex]

2. Simplify the equation:

Distribute the 3 in the equation:

[tex]\[ -4x + 3 \cdot 3x - 3 \cdot 4 = 3 \][/tex]
[tex]\[ -4x + 9x - 12 = 3 \][/tex]

Combine like terms:

[tex]\[ 5x - 12 = 3 \][/tex]

3. Solve for [tex]\( x \)[/tex]:

Add 12 to both sides of the equation:

[tex]\[ 5x = 15 \][/tex]

Divide by 5:

[tex]\[ x = 3 \][/tex]

So, we have [tex]\( x = 3 \)[/tex].

4. Substitute [tex]\( x \)[/tex] back into the second equation to find [tex]\( y \)[/tex]:

Using [tex]\( y = 3x - 4 \)[/tex] and substituting [tex]\( x = 3 \)[/tex]:

[tex]\[ y = 3(3) - 4 \][/tex]
[tex]\[ y = 9 - 4 \][/tex]
[tex]\[ y = 5 \][/tex]

Therefore, the solution to the system of equations is:

[tex]\[ x = 3 \\ y = 5 \][/tex]

This means the point [tex]\((3, 5)\)[/tex] satisfies both equations in the system.