Use substitution to solve the system.

[tex]\[
\begin{aligned}
-4x + 3y &= 3 \\
y &= 3x - 4
\end{aligned}
\][/tex]

[tex]\[
\begin{array}{l}
x= \\
y=
\end{array}
\][/tex]

[tex]\(\square\)[/tex]
[tex]\(\square\)[/tex]



Answer :

Certainly! Let's solve the given system of equations using substitution.

The given system is:
[tex]\[ \begin{aligned} -4x + 3y &= 3 \quad \text{(1)} \\ y &= 3x - 4 \quad \text{(2)} \end{aligned} \][/tex]

Step 1: Solve one of the equations for one variable.

Equation (2) is already solved for [tex]\( y \)[/tex]:
[tex]\[ y = 3x - 4 \][/tex]

Step 2: Substitute this expression for [tex]\( y \)[/tex] into the other equation.

Substitute [tex]\( y = 3x - 4 \)[/tex] into Equation (1):
[tex]\[ -4x + 3(3x - 4) = 3 \][/tex]

Step 3: Simplify and solve for [tex]\( x \)[/tex].

Distribute the 3:
[tex]\[ -4x + 9x - 12 = 3 \][/tex]
Combine the [tex]\( x \)[/tex]-terms:
[tex]\[ 5x - 12 = 3 \][/tex]
Add 12 to both sides:
[tex]\[ 5x = 15 \][/tex]
Divide both sides by 5:
[tex]\[ x = 3 \][/tex]

Step 4: Substitute the value of [tex]\( x \)[/tex] back into the expression for [tex]\( y \)[/tex].

Substitute [tex]\( x = 3 \)[/tex] into [tex]\( y = 3x - 4 \)[/tex]:
[tex]\[ y = 3(3) - 4 \][/tex]
Simplify:
[tex]\[ y = 9 - 4 \][/tex]
[tex]\[ y = 5 \][/tex]

Final Solution:

[tex]\[ \begin{array}{l} x = 3 \\ y = 5 \end{array} \][/tex]

So the solution to the system of equations is [tex]\( x = 3 \)[/tex] and [tex]\( y = 5 \)[/tex].