Answer :

To simplify [tex]\(\sqrt{-48}\)[/tex], we follow a step-by-step approach as detailed below:

1. Recognize that we are dealing with the square root of a negative number. To handle this, we use the imaginary unit [tex]\(i\)[/tex], where [tex]\(i = \sqrt{-1}\)[/tex].

[tex]\[ \sqrt{-48} = \sqrt{(-1) \times 48} \][/tex]

2. Break this down using [tex]\(\sqrt{-1} = i\)[/tex]:

[tex]\[ \sqrt{-48} = \sqrt{-1} \times \sqrt{48} = i \times \sqrt{48} \][/tex]

3. Next, simplify [tex]\(\sqrt{48}\)[/tex]. To do this, factor 48 into its prime factors and look for perfect squares:

[tex]\[ 48 = 16 \times 3 \][/tex]

Therefore,

[tex]\[ \sqrt{48} = \sqrt{16 \times 3} = \sqrt{16} \times \sqrt{3} \][/tex]

4. Since [tex]\(\sqrt{16} = 4\)[/tex]:

[tex]\[ \sqrt{48} = 4 \times \sqrt{3} \][/tex]

5. Combine this with the previously included [tex]\(i\)[/tex]:

[tex]\[ i \times \sqrt{48} = i \times (4 \times \sqrt{3}) = 4i \times \sqrt{3} \][/tex]

6. Thus, the simplified form of [tex]\(\sqrt{-48}\)[/tex] is:

[tex]\[ \sqrt{-48} = 4i \sqrt{3} \][/tex]

Therefore, the correct option is:

[tex]\[ \boxed{4i \sqrt{3}} \][/tex]