The function [tex]g(x)[/tex] is a transformation of the quadratic parent function, [tex]f(x) = x^2[/tex]. What function is [tex]g(x)[/tex]?

A. [tex]g(x) = \frac{1}{r} x^2[/tex]



Answer :

To find the function [tex]\( g(x) \)[/tex] from the given parent function [tex]\( f(x) = x^2 \)[/tex], we need to understand that [tex]\( g(x) \)[/tex] is a vertical compression of [tex]\( f(x) \)[/tex] by a factor of [tex]\( r \)[/tex].

### Step-by-Step Solution

1. Identify the parent function:
The parent function given is [tex]\( f(x) = x^2 \)[/tex].

2. Understand vertical compression:
Vertical compression by a factor of [tex]\( r \)[/tex] means that every [tex]\( y \)[/tex]-value of the function [tex]\( f(x) \)[/tex] is divided by [tex]\( r \)[/tex]. Mathematically, if [tex]\( f(x) \)[/tex] undergoes a vertical compression by a factor of [tex]\( r \)[/tex], the new function [tex]\( g(x) \)[/tex] can be written as:
[tex]\[ g(x) = \frac{f(x)}{r} \][/tex]

3. Substitute the parent function into the vertical compression formula:
Substitute [tex]\( f(x) = x^2 \)[/tex] into the vertical compression formula:
[tex]\[ g(x) = \frac{x^2}{r} \][/tex]

4. Simplify the expression:
The expression [tex]\(\frac{x^2}{r}\)[/tex] already represents the function [tex]\( g(x) \)[/tex] in its simplest form.

Therefore, the transformed function [tex]\( g(x) \)[/tex] after applying the vertical compression by a factor of [tex]\( r \)[/tex] to the parent function [tex]\( f(x) = x^2 \)[/tex] is:
[tex]\[ g(x) = \frac{1}{r} x^2 \][/tex]

So, the correct function is [tex]\( g(x) = \frac{1}{r} x^2 \)[/tex].