Answer :

To find the sum of the series

[tex]\[ \sum_{n=1}^{120}(3n - 7), \][/tex]

we break it down into simpler parts using summation properties. Let's summarize the steps to solve it.

1. Identify the series: We need to find the sum of [tex]\(3n - 7\)[/tex] from [tex]\(n = 1\)[/tex] to [tex]\(n = 120\)[/tex].

2. Break the series into two separate sums:
[tex]\[ \sum_{n=1}^{120}(3n - 7) = \sum_{n=1}^{120} 3n - \sum_{n=1}^{120} 7 \][/tex]

3. Calculate the first sum [tex]\(\sum_{n=1}^{120} 3n\)[/tex]:
- Factor out the constant [tex]\(3\)[/tex]:
[tex]\[ \sum_{n=1}^{120} 3n = 3 \sum_{n=1}^{120} n \][/tex]
- The sum of the first [tex]\(n\)[/tex] natural numbers is given by the formula [tex]\(\frac{n(n+1)}{2}\)[/tex].
[tex]\[ \sum_{n=1}^{120} n = \frac{120 \cdot 121}{2} = 7260 \][/tex]
- Multiply by [tex]\(3\)[/tex]:
[tex]\[ 3 \sum_{n=1}^{120} n = 3 \cdot 7260 = 21780 \][/tex]

4. Calculate the second sum [tex]\(\sum_{n=1}^{120} 7\)[/tex]:
- Factor out the constant [tex]\(7\)[/tex]:
[tex]\[ \sum_{n=1}^{120} 7 = 7 \cdot 120 = 840 \][/tex]

5. Combine the results:
[tex]\[ \sum_{n=1}^{120} (3n - 7) = 21780 - 840 = 20940 \][/tex]

So, the sum

[tex]\[ \sum_{n=1}^{120}(3n - 7) \][/tex]

is

[tex]\[ \boxed{20940}. \][/tex]