Unit Test

1. What is the inverse of the function [tex]f(x)=\frac{1}{4}x-12[/tex]?

A. [tex]h(x)=48x-4[/tex]
B. [tex]h(x)=48x+4[/tex]
C. [tex]h(x)=4x-48[/tex]
D. [tex]h(x)=4x+48[/tex]



Answer :

To find the inverse of the function [tex]\( f(x) = \frac{1}{4}x - 12 \)[/tex], we will go through the following steps:

1. Set [tex]\( f(x) = y \)[/tex] and rewrite the function in terms of [tex]\( y \)[/tex]:
Given [tex]\( f(x) = \frac{1}{4}x - 12 \)[/tex], let [tex]\( y = \frac{1}{4}x - 12 \)[/tex].

2. Solve for [tex]\( x \)[/tex] in terms of [tex]\( y \)[/tex]:
[tex]\[ y = \frac{1}{4}x - 12 \][/tex]
To isolate [tex]\( x \)[/tex], first add 12 to both sides:
[tex]\[ y + 12 = \frac{1}{4}x \][/tex]
Then multiply both sides by 4 to solve for [tex]\( x \)[/tex]:
[tex]\[ 4(y + 12) = x \][/tex]
Simplify the equation:
[tex]\[ x = 4y + 48 \][/tex]

3. Replace [tex]\( y \)[/tex] with [tex]\( x \)[/tex] to express the inverse function:
[tex]\[ h(x) = 4x + 48 \][/tex]

So the inverse function [tex]\( h(x) \)[/tex] of [tex]\( f(x) = \frac{1}{4}x - 12 \)[/tex] is:
[tex]\[ h(x) = 4x + 48 \][/tex]

The correct answer is:
[tex]\[ h(x) = 4x + 48 \][/tex]