Use the fact that 1.5 is the same as [tex] \frac{3}{2} [/tex] to select all of the equations below that are equivalent to [tex] T = A^{1.5} [/tex].

A. [tex] T = A^{\frac{3}{2}} [/tex]

B. [tex] T = \left(A^{\frac{1}{2}}\right)^3 [/tex]

C. [tex] T = (\sqrt{A})^3 [/tex]

D. [tex] T = \sqrt{A^3} [/tex]



Answer :

Sure, let's work through this step-by-step to determine which equations are equivalent to [tex]\( T = A^{1.5} \)[/tex]. Remember that [tex]\( 1.5 \)[/tex] is the same as [tex]\( \frac{3}{2} \)[/tex].

1. Equation: [tex]\( T = A^{3 / 2} \)[/tex]

Simplifying this:
[tex]\[ T = A^{3 / 2} \][/tex]
Since [tex]\( A^{1.5} = A^{3 / 2} \)[/tex], this equation is equivalent to [tex]\( T = A^{1.5} \)[/tex].

2. Equation: [tex]\( T = \left(A^{1 / 2}\right)^3 \)[/tex]

Simplifying this:
[tex]\[ T = \left(A^{1 / 2}\right)^3 = A^{(1 / 2) \cdot 3} = A^{3 / 2} \][/tex]
Again, since [tex]\( A^{1.5} = A^{3 / 2} \)[/tex], this equation is equivalent to [tex]\( T = A^{1.5} \)[/tex].

3. Equation: [tex]\( T = (\sqrt{A})^3 \)[/tex]

Simplifying this:
[tex]\[ T = (\sqrt{A})^3 = (A^{1 / 2})^3 = A^{(1 / 2) \cdot 3} = A^{3 / 2} \][/tex]
Here, we have [tex]\( A^{3/2} \)[/tex] which is equivalent to [tex]\( A^{1.5} \)[/tex]. Therefore, this equation is equivalent to [tex]\( T = A^{1.5} \)[/tex].

4. Equation: [tex]\( T = \sqrt{A^3} \)[/tex]

Simplifying this:
[tex]\[ T = \sqrt{A^3} = (A^3)^{1 / 2} = A^{3 \cdot (1 / 2)} = A^{3 / 2} \][/tex]
This canonicalizes to [tex]\( A^{1.5} = A^{3 / 2} \)[/tex]. So, this equation is also equivalent to [tex]\( T = A^{1.5} \)[/tex].

To summarize based on our step-by-step simplifications:
All the equations given here are equivalent to [tex]\( T = A^{1.5} \)[/tex].

The simplified results indicate that all of the given equations are indeed equivalent to [tex]\( T = A^{1.5} \)[/tex], i.e., [tex]\( [1, 1, 1, 1] \)[/tex].